195 research outputs found

    Detecting relic gravitational waves in the CMB: The contamination caused by the cosmological birefringence

    Full text link
    The B-mode polarization of the cosmic microwave background (CMB) radiation is an excellent information channel for the detection of relic gravitational waves. However, the detection is contaminated by the B-mode polarization generated by some other effects. In this paper, we discuss the contaminations caused by the cosmological birefringence, which converts the CMB E-mode to the B-mode, and forms the effective noise for the detection of gravitational waves. We find that this contamination is significant, if the rotation angle is large. However, this kind of B-mode can be properly de-rotated, and the effective noises can be greatly reduced. We find that, comparing with the contaminations caused by cosmic weak lensing, the residual polarization generated by the cosmological birefringence is negligible for the detection of relic gravitational waves in the CMB.Comment: 9 pages, 4 figures, references added, PLB accepte

    An efficient probe of the cosmological CPT violation

    Get PDF
    We develop an efficient method based on the linear regression algorithm to probe the cosmological CPT violation using the CMB polarisation data. We validate this method using simulated CMB data and apply it to recent CMB observations. We find that a combined data sample of BICEP1 and BOOMERanG 2003 favours a nonzero isotropic rotation angle at 2.3σ2.3\sigma confidence level, ie, Δα=3.3±1.4\Delta\alpha=-3.3 \pm1.4 deg (68% CL) with systematics included.Comment: 10 pages, 5 figures, 2 tables. The published versio

    Does the introduction of index futures stabilize stock markets? Further evidence from emerging markets

    Get PDF
    We examine how the introduction of index futures affects the stability of stock markets in seven emerging countries by studying the existence and the impact of positive feedback trading in both pre- and post-futures periods. Consistent with the findings in advanced markets, we find that positive feedback traders are already prevalent before the introduction of index futures in six out of the seven markets studied. After the introduction of index futures, signs of positive feedback trading emerge in only two markets (India and Poland). In contrast to the evidence in developed markets, positive feedback traders migrate from spot to futures markets in four markets, which suggests that the introduction of index futures may destabilize some emerging stock markets. Another interesting finding is that positive feedback trading becomes more intense when there is a market decline in the majority of the markets

    Transient analysis of arm locking controller

    Full text link
    Arm locking is one of the key technologies to suppress the laser phase noise in spaced-based gravitational waves observatories. Since arm locking was proposed, phase margin criterion was always used as the fundamental design strategy for the controller development. In this paper, we find that this empirical method from engineering actually cannot guarantee the arm locking stability. Therefore, most of the advanced arm locking controllers reported so far may have instable problems. After comprehensive analysis of the single arm locking's transient responses, strict analytical stability criterions are summarized for the first time. These criterions are then generalized to dual arm locking, modified-dual arm locking and common arm locking, and special considerations for the design of arm locking controllers in different architectures are also discussed. It is found that PI controllers can easily meet our stability criterions in most of the arm locking systems. Using a simple high gain PI controller, it is possible to suppress the laser phase noise by 5 orders of magnitude within the science band. Our stability criterions can also be used in other feedback systems, where several modules with different delays are connected in parallel.Comment: 24 pages, 24 figure

    Shoot/Root Interactions Affect Soybean Photosynthetic Traits and Yield Formation: A Case Study of Grafting With Record-Yield Cultivars

    Get PDF
    Improvement of soybean [Glycine max (L.) Merr.] yield and photosynthesis physiology have been achieved over decades of cultivar breeding. Identification of the mechanisms involved in shoot-root interactions would be beneficial for the development of yield improvement breeding strategies. The objectives of this study were to investigate soybean shoot-root interactions with different-year released soybean cultivars and to evaluate their effects on grain yield and yield components. Soybean grafts used in this study were constructed with two record-yield cultivars Liaodou14 (L14) and Zhonghuang35 (Z35) and eleven cultivars released in 1966–2006 from the United States and Chinese. The grafting experiments were conducted as pot-culture experiments and repeated in 2014 and 2015. Our results showed that net photosynthesis rate (PN) was positively correlated to both root activity and root bleeding sap mass (RBSM) during the R6 reproductive stage. Moreover, different year-released soybean shoots had all exhibited capabilities of changing the root activity and architecture of L14 and Z35 rootstocks to “generation”-specific patterns during all reproductive stages. However, these influences were independent of the photosynthetic strength. Yield analysis had demonstrated that high-yielding root systems (L14 and Z35 rootstocks) could cause more than 15% of yield increase in seven out of eleven common scions in a scion-genotype-dependent manner. For Williams-descendant cultivar scions, L14 and Z35 rootstocks promoted yields mainly by increasing the seed number (SN), but those scions of Amsoy-descendent cultivars showed mainly seed weight (SW) increases when grafted onto L14 and Z35 rootstocks. On the other hand, although most tested common rootstocks did not show significant influence over the final yields in record-yield L14 and Z35 scions, they were obviously capable of shifting the formation of yield components when compared to L14 and Z35 self-grafting controls. Taken together, soybean shoots could influence the root physiology and played a crucial role in the determination of yield potentials. Synergistically with shoots, soybean roots played a more supportive role during the realization of yield potentials through root activities and by balancing the formation of yield components. These findings provided interesting insightful information for developing new breeding strategies which aim to pyramid elite physiological and yield traits by selecting specific parental combinations
    corecore