1 research outputs found
Model Reduction and Nonlinear Model Predictive Control of Large-Scale Distributed Parameter Systems with Applications in Solid Sorbent-Based CO2 Capture
<p>This dissertation deals with some computational and analytic challenges for dynamic process operations using first-principles models. For processes with significant spatial variations, spatially distributed first-principles models can provide accurate physical descriptions, which are crucial for offline dynamic simulation and optimization. However, the large amount of time required to solve these detailed models limits their use for online applications such as nonlinear model predictive control (NMPC). To cope with the computational challenge, we develop computationally efficient and accurate dynamic reduced order models which are tractable for NMPC using temporal and spatial model reduction techniques. Then we introduce an input and state blocking strategy for NMPC to further enhance computational efficiency. To improve the overall economic performance of process systems, one promising solution is to use economic NMPC which directly optimizes the economic performance based on first-principles dynamic models. However, complex process models bring challenges for the analysis and design of stable economic NMPC controllers. To solve this issue, we develop a simple and less conservative regularization strategy with focuses on a reduced set of states to design stable economic NMPC controllers. In this thesis, we study the operation problems of a solid sorbent-based CO2 capture system with bubbling fluidized bed (BFB) reactors as key components, which are described by a large-scale nonlinear system of partial-differential algebraic equations. By integrating dynamic reduced models and blocking strategy, the computational cost of NMPC can be reduced by an order of magnitude, with almost no compromise in control performance. In addition, a sensitivity based fast NMPC algorithm is utilized to enable the online control of the BFB reactor. For economic NMPC study, compared with full space regularization, the reduced regularization strategy is simpler to implement and lead to less conservative regularization weights. We analyze the stability properties of the reduced regularization strategy and demonstrate its performance in the economic NMPC case study for the CO2 capture system.</p