2,099 research outputs found

    Effect of filling methods on the forecasting of time series with missing values

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2014The Gulf of Alaska Mooring (GAK1) monitoring data set is an irregular time series of temperature and salinity at various depths in the Gulf of Alaska. One approach to analyzing data from an irregular time series is to regularize the series by imputing or filling in missing values. In this project we investigated and compared four methods (denoted as APPROX, SPLINE, LOCF and OMIT) of doing this. Simulation was used to evaluate the performance of each filling method on parameter estimation and forecasting precision for an Autoregressive Integrated Moving Average (ARIMA) model. Simulations showed differences among the four methods in terms of forecast precision and parameter estimate bias. These differences depended on the true values of model parameters as well as on the percentage of data missing. Among the four methods used in this project, the method OMIT performed the best and SPLINE performed the worst. We also illustrate the application of the four methods to forecasting the Gulf of Alaska Mooring (GAK1) monitoring time series, and discuss the results in this project

    Generalized Negative Binomial Processes and the Representation of Cluster Structures

    Full text link
    The paper introduces the concept of a cluster structure to define a joint distribution of the sample size and its exchangeable random partitions. The cluster structure allows the probability distribution of the random partitions of a subset of the sample to be dependent on the sample size, a feature not presented in a partition structure. A generalized negative binomial process count-mixture model is proposed to generate a cluster structure, where in the prior the number of clusters is finite and Poisson distributed and the cluster sizes follow a truncated negative binomial distribution. The number and sizes of clusters can be controlled to exhibit distinct asymptotic behaviors. Unique model properties are illustrated with example clustering results using a generalized Polya urn sampling scheme. The paper provides new methods to generate exchangeable random partitions and to control both the cluster-number and cluster-size distributions.Comment: 30 pages, 8 figure

    Beta-Negative Binomial Process and Exchangeable Random Partitions for Mixed-Membership Modeling

    Full text link
    The beta-negative binomial process (BNBP), an integer-valued stochastic process, is employed to partition a count vector into a latent random count matrix. As the marginal probability distribution of the BNBP that governs the exchangeable random partitions of grouped data has not yet been developed, current inference for the BNBP has to truncate the number of atoms of the beta process. This paper introduces an exchangeable partition probability function to explicitly describe how the BNBP clusters the data points of each group into a random number of exchangeable partitions, which are shared across all the groups. A fully collapsed Gibbs sampler is developed for the BNBP, leading to a novel nonparametric Bayesian topic model that is distinct from existing ones, with simple implementation, fast convergence, good mixing, and state-of-the-art predictive performance.Comment: in Neural Information Processing Systems (NIPS) 2014. 9 pages + 3 page appendi
    • …
    corecore