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Abstract

The Gulf of Alaska Mooring (GAK1) monitoring data set is an irregular time series of 

temperature and salinity at various depths in the Gulf of Alaska. One approach to analyzing data 

from an irregular time series is to regularize the series by imputing or filling in missing 

values. In this project we investigated and compared four methods (denoted as APPROX, 

SPLINE, LOCF and OMIT) of doing this. Simulation was used to evaluate the performance of 

each filling method on parameter estimation and forecasting precision for an Autoregressive 

Integrated Moving Average (ARIMA) model. Simulations showed differences among the four 

methods in terms of forecast precision and parameter estimate bias. These differences depended 

on the true values of model parameters as well as on the percentage of data missing. Among the 

four methods used in this project, the method OMIT performed the best and SPLINE performed 

the worst. We also illustrate the application of the four methods to forecasting the Gulf of 

Alaska Mooring (GAK1) monitoring time series, and discuss the results in this project.
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Introduction

A time series is a collection of data points obtained through repeated measurement over time.

The daily value of the stock market and the quarterly sales volume of a product are all examples 

of time series data. Time series analysis can provide information about the internal structure of 

data, such as autocorrelation and seasonal variation, and forecast future trends. Most time series 

are regular time series, such as data measured at daily, weekly, monthly, quarterly or annual 

intervals. However, irregular time series, where data are recorded at irregular intervals, often 

occur, for example in long-term field data collections. This may be due to factors such as 

weather, funding, and others.

Missing data are a common problem in quantitative research studies such as biology, marine 

sciences, social sciences, and space sciences (Acock 2005, Baraldi 2009). Missing data may 

cause large statistical and design problems in research. According to Acock (2005), there are 

four different types of missing data: missing by definition of the subpopulation, missing 

completely at random (MCAR), missing at random (MAR), and nonignorable missing data. 

Missing by definition of the subpopulation happens when some survey participants are excluded 

from the analysis because they are not in the subpopulation under investigation. The idea of 

missing completely at random is that thinking of the data set as a large matrix, the missing values 

are randomly distributed throughout the matrix. Missing at random is a much weaker (but still 

strong) assumption than MCAR. Nonignorable missing data are the data missing in ways that 

are neither MAR nor MCAR, but nevertheless are systematic. Two approaches, traditional and 

modern alternative approaches, are commonly used to work with missing data. The traditional 

approaches to working with missing data include listwise deletion, pairwise deletion, indicator 

variable, and mean substitution (Acock 2005). Listwise or case deletion is the most common
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solution to missing values, it removes all data for a case that has one or more missing values, and 

the listwise deletion will give unbiased estimates if the missing values are MCAR. Pairwise 

deletion, unlike listwise deletion, only removes the specific values from the analysis (not the 

entire case). Indicator variable is a method for dealing with missing data on predictors in a 

regression analysis. For each predictor with missing data, a dummy variable is created to 

indicate whether or not data are missing on that predictor. Mean substitution uses the sample 

mean to replace the missing values. Traditional approaches, especially mean substitution, for 

working with missing data can lead to biased estimates and may either reduce or exaggerate 

statistical power and lead to invalid conclusions (Acock 2005). Modern alternative approaches 

are single imputation, multiple imputation, and full information maximum likelihood estimation 

(Acock 2005). Single imputation is hot-dock imputation where a missing value is impute from a 

randomly selected similar record. Multiple imputations are run on the same data set multiple 

times and the imputed data sets are saved for later analysis. Full information maximum 

likelihood estimation does not actually impute missing values but uses all the available 

information to provide maximum likelihood estimation and maximum likelihood estimation has 

proven to be an excellent method for handling missing data in a wide variety of situations. 

Investigations of methods for imputing missing values for forecasting in time series include 

Junninen et al. (2004) and Plaia and Bondi (2006).

Time series forecasting is the process of using a model to generate predictions or forecasts of 

future events based on known past events. Many models can be used for time series forecasting. 

Among them is the Autoregressive Integrated Moving Average (ARIMA) model which consists 

of three parts, a autoregressive (AR) part (future values are estimated based on a weighted sum 

of past values), a Moving Average (MA) part (a linear regression of the current value of the

3



series against current and previous white noise error terms or random shocks), and an integrated 

(I) part (where an initial differencing step can be applied to remove any non-stationarity in the 

signal). ARIMA, introduced by Box and Jenkins (1970), which has been one of the most popular 

approaches to forecasting and has been used to forecast, for instance, daily peak electricity 

demand (Asad, 2012), world broadband and mobile telecommunications’ penetration 

(Christodoulos et al. 2010), traffic flow (Williams et al. 2003) and stock price (Pai and Lin 

2005).

The data for the Gulf of Alaska Mooring (GAK1) (http://www.ims.uaf.edu/gak1/) time series is 

one example of an irregular time series. This time series data contains measurements of 

temperature, salinity and depth profiles obtained from an oceanographic station located at the 

mouth of Resurrection Bay near Seward, Alaska. The data collection began in 1970, and the 

time interval of sampling varies from several times per month to a few times per year. One 

approach to dealing with irregular time series is to regularize them, either by deleting values or 

adding values at given intervals, in order to create regularly-spaced measurements. The purpose 

of this project is to determine the best methods to “fill in” missing data in a time series. Of 

particular interest is identifying which methods result in the most reliable forecasts.

Our objective in this study is to forecast the measurements in the GAK1 data sets using ARIMA 

models. Because the time series in the data sets are irregular, we worked on identifying an 

appropriate method for filling in missing values. We performed a simulation study to compare 

four filling methods on the basis of forecasting accuracy and parameter estimate bias. We 

considered two additional factors in our simulations, specifically we investigated how the true 

values of model coefficients and the percentage of observations that were missing affected 

forecasting accuracy and parameter estimate bias. After simulation, the methods that least
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affected time series forecasting accuracy in terms of Mean Absolute Deviation (MAD) were used 

to transform four irregular data sets from the GAK1 time series (from 2000 to 2010) to regular 

data, then ARIMA models were fitted. Three known observations were forecasted according to 

the fitted models, and the performance of the filling methods were compared for these time 

series.

1. Background

1.1. Filling Methods for Time Series Data

Four methods, which we will denote APPROX, SPLINE, LOCF and OMIT, were selected to fill 

the missing values. These four methods were carried out by the functions na.approx, na.spline, 

na.locf and na.omit, which are provided in the zoo package in R (Kukuyeva 2010; Zeileis et al. 

2014). The first three methods belong to modern approaches to interpolating missing values and 

the last method performs listwise deletion, a traditional approach to working with missing 

values. Next we describe each of the four methods.

1.1.1. APPROX: This method replaces missing values, denoted by NA, with a linear 

approximation from surrounding observations. For a value x in the interval (x0, x1), the value y 

along the straight line is given by the equation:

y =  y0 + (y1-Y0) ^

This is the formula for linear interpolation in the interval (x0, x1). For example, suppose we have 

three observations 1, NA, 2, NA, 10 and want to create two additional observations between the
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first and the second, and between the second and the third. A linear approximation would result 

in the series 1, 1.5, 2, 6, 10.

1.1.2. SPLINE: This method replaces the missing values with a cubic spline interpolation. 

Suppose we have a table of points [xi, yi] for i=0, 1,..., n for the function y=f(x), with n+1 

points and n intervals between them. The cubic spline curve is a piecewise polynomial curve 

and is constructed by using a different cubic polynomial curve between each two data points. 

There is a separate cubic polynomial for each interval, each with its own coefficients:

F i(x)= A i(x-x i) 3 + B i(x-x i) 2 + C i(x-xi) + D, for x  from [xi, x i+1]

Together, these polynomial segments are denoted F(x), the spline. Since there are n intervals 

and four coefficients for each we require a total of 4n parameters to define the spline F(x). We 

need to find 4n independent linear equations to fix them. Two equations for each interval come 

from the requirement that the cubic polynomial match the values of the table at both ends of the 

interval:

Fi(xi)=yi, Fi(xi+1)=yi+1 

This gives n +1 conditions.

The continuity conditions for the spline, its derivative, and its second derivative are the 

following:

Fi-1(xi) = F i (xi), Fi-1'(xi) = Fi'(xi), Fi-1"(xi) = F i"(xi)
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These conditions apply for i=1,2,.,n-1, resulting in 3(n-1) constraints. So we need two more 

conditions to completely fix the spline.

F 0”(x0) = 0 , F"n(xn) = 0

With 4n coefficients and 4n linear conditions it is straightforward to work out the equations that 

determine them.

1.1.3. LOCF : This method is known a Last Observation Carried Forward and replaces each NA 

value with the most recent non-NA prior to it (if the first observation is NA it is removed by 

default) (Kukuyeva, 2010; Zeileis et al 2014). For example, one data set with 1, NA, 3, 5, NA, 8 

will become 1, 1, 3, 5, 5, 8 when LOCF is used.

1.1.4. OMIT: This method is used just to omit the NA (Kukuyeva 2010; Zeileis et al 2014) and 

it is the same as the listwise deletion of the traditional approaches. For example, the data set 

with 1, NA, 3, 5, NA, 8 will become 1, 3, 5, 8 when OMIT is used.

1.2. ARIMA model

The Autoregressive Integrated Moving Average (ARIMA) model may be used to analyze and 

forecast equally spaced univariate time series data. The model is generally referred to as an 

ARIMA (p, d, p) where parameters p, d, and q are non-negative integers that refer to the number 

of autoregressive terms, the number of nonseasonal differences, and the number of lagged errors 

in the prediction equation. In an ARIMA model, a future value is assumed to be a linear 

combination of past values and past and present errors. The equation of the ARIMA is:

Y t =  ^ 1 y t-1 +  ^ 2 y t-2 + ............+  ^p yt-p + s t  +  01 s t-1 + 0 2  £t-2 + ............. 0q£t-q
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where yt and St are the actual value and random error at time period t, respectively, and (i=1,

2 , ..... ,p) and 0j (j=0, 1, 2, .... , q) are model parameters. The values p and q are integers and

are often referred to as orders of the model. Random errors St , are assumed to be independently 

and identically distributed with a mean of zero and a constant variance of o2. When d=0, the 

ARIMA (1, 0, 1) may be expressed as ARMA (1, 1) and is represented as follows

y t =  00  +  ^ 1 y t-1 +  St +  01 St-1.

1.3. Best models for irregular GAK1 time series

Four datasets, temperature at surface, temperature at 250 meters, salinity at surface and salinity 

at 250 meters, were initially fit using ARIMA models. A variety of orders were investigated 

including ARIMA (1, 0, 1), ARIMA (0, 1, 0), ARIMA (1, 1, 0), ARIMA (0, 1, 1) and ARIMA 

(0, 2, 1). The best ARIMA models for all four datasets were selected according to the lowest 

Akaike Information Criterion (AIC) values. The test results showed that ARIMA (1, 0, 1) had 

the lowest AIC value and the ARIMA (1, 0, 1) model was used in this project for all four time 

series and also used for simulations. We note that this selection was determined using the 

original irregular time series, and therefore may be inaccurate. However, it provides a starting 

point for our investigation.

2. Simulations

2.1. Simulation Design

Data for simulations were generated under the ARIMA (1, 0, 1) model. Data were generated 

having different values of model coefficients ^ and 0. The variance o2 was set to one for all 

simulations. For each simulated data set a given proportion of values were randomly deleted,
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and then replaced using each of the four filling methods. To evaluate the accuracy of the 

forecasts, the Mean Absolute Deviation (MAD) was computed and used to compare different 

models. The calculation of MAD is as follows

M A D  = 1 Yi=ilAi -  Fil

where n is the number of forecast values, A i  are the actual observed values and F i are the 

forecast values from a fitted model.

The simulation procedure is described in the flowchart (Fig. 1). Briefly, first, the simulations 

began by fixing the value of the parameters (^ and 0) to generate 203 observations using 

arima.sim in R. Second, varying percentages of the first 200 observations were randomly 

selected and deleted to create new data sets. These missing values in each new data set were 

filled in by the four methods, APPROX, SPLINE, LOCF and OMIT. The ARIMA (1, 0, 1) 

models were fit using the data set with non-missing values. Then each fitted model was used to 

forecast the remaining 3 values. In addition the values of the estimated parameters ^ and 0 were 

recorded. Forecast values were used to compute MAD. Parameter estimates were used to 

estimate bias. Differences in mean MAD among the four filling methods were analyzed using 

one-way ANOVA. The Tukey Honest Significant Difference method and pairwise t tests were 

conducted to test the MAD differences between filling methods and also between filling methods 

and non-missing control. Significant bias in estimated parameters was determined with t-tests.

All comparisons were made at significance level a = .05.

Three factors were varied during the simulation. These three factors and levels of each factor 

were six levels of percentages of missing observations (5, 20, 30, 40, 50 and 70%), four levels of
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1st order AR-MA values (level 1: ^ =0.1, 0=0.1, level 2: ^ =0.1, 0=0.9, level 3: ^ =0.5, 0=0.5 and 

level 3: ^ = 0.7, 0 = 0.2), four filling methods (APPROX, SPLINE, LOCF and OMIT). The 

original simulated data, with no missing values served as a CONTROL. For each combination 

of factor levels, 1000 such data sets were simulated resulting in 1000 MADs and 1000 estimated 

AR and estimated MA coefficients.

2.2. Simulation results

To investigate the effect of the percentage of missing values and filling in methods on the 

forecast of the time series, three simulations were conducted separately for each of the four 

levels of true AR-MA values (level 1: ^ =0.1, 0=0.1, level 2: ^ =0.1, 0=0.9, level 3: ^ =0.5,

0=0.5 and level 4: ^ =0.6, 0=0.2) using a 6 (factor percentage) x 5 (factor methods including 

control) factorial design. Analysis of Variance was used to compare mean MAD among 

combination of the factors of missing and filling method. The effect of percentage of missing 

values and filling in methods on the bias of estimated coefficients (^ and 0) was similarly 

investigated using the same factorial design. For each fitted model, bias was estimated as the 

difference between the estimates AR and MA coefficient and the true values of the coefficients. 

Analysis of Variance models were fit separately to investigate the effects of percentage of 

missing + filling method on means of bias of estimated AR and MA coefficients.

2.2.1. The effect of methods and percentage of missing values on the mean MAD and the 

bias of estimated AR and MA values when the true AR-MA values at level 1

The results for mean MAD:

• When the true AR-MA values were at level 1, both missing percentage (F(5, 29970) =9.1, 

p  < .001) and methods (F(4, 29970)= 50.1, p  < .001) significantly affected the forecast of
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time series in terms of mean MAD but interaction between two factors was not 

statistically significant (F(20, 29970) = 0.05,p  > .05). Post-hoc analyses using Tukey 

Honest Significant Difference method indicated that for factor methods, only method 

OMIT had no significant difference compared to no missing CONTROL at a = .05 and 

performed best (Table 1). There are no significantly different between the method 

APPROX and LOCF (Table 1). The method SPLINE was the worst in all four methods 

(Table1). For factor percentage, the effect were no significant differences on MAD 

between 5%, 30%, and 50%, no differences between 5%, 20%, 50% , and 70%, and no 

differences between 5%, 20%, 40% and 70% (Table 2).

The results for the estimated AR

• When the true AR-MA values were under level 1 (^ = 0.1 and 0 = 0.1), simulation 

indicated that percentage of missing values (F(5, 29970) =2.28, p  = .044) and methods 

(F(4, 29970) = 1363, p  < .001) had a significant effect on the bias but the interaction 

between two factors (F(20, 29970) = 0.29, p  > .05) was not statistically significant. Post- 

hoc analyses using Tukey Honest Significant Difference method indicated that for factor 

methods, all four methods and CONTROL were biased (Table 3). The estimated AR 

values from all four methods were more biased than those from CONTROL at a = .05 

and the values from APPROX and LOCF were the most biased (Table 3). For factor 

percentage, the estimated AR values were biased at all different percentages of missing 

values (Table 4). The effect of missing values on the bias of estimated AR values can be 

divided into two significant different groups. One group was 20%, 40% and 70%, and 

the other was 5%, 30% and 50% (Table 4).
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The results for estimated MA

• When the true AR-MA values were under level 1 (^ = 0.1 and 0 = 0.1), simulation 

indicated that factor percentage (F(5, 29970) = 3.69, p  = .0024) methods (F(4, 29970) = 

11778, p  < .001) had significant effect on the bias of estimated MA value but interaction 

between two factors (F(20, 29970) = 0.43, p  > .05) was not statistically significant. Post- 

hoc analyses using Tukey Honest Significant Difference method indicated that for factor 

methods, all four methods and CONTROL had significant different effect on the bias of 

estimated MA values and the estimated values from method SPLINE was the most biased 

at a = .05 (Table 5). For the factor percentage, the estimated MA values were biased at all 

percentages of missing values. The effect of percentages on the bias of the estimated MA 

values can be divided into three groups. The first group was 5%, 30% and 50%, the 

second group was 5%, 20%, 50% and 70%, and the third group was 5%, 20%, 40% and 

70% at a = .05 (Table 6).

2.2.2. The effect of methods and percentage of missing values on the mean MAD and the

bias of estimated AR and MA values when the true AR-MA values at level 2

The results for mean MAD values

• When the true AR-MA values were at level 2, factor methods (F(4, 29970)= 55.8,p  < 

.001) and factor percentage (F(5, 29970) =10.2, p  < .001) significantly affected the 

forecast of time series in terms of mean MAD but the interaction was not statistically 

significant (F(20, 29970) = 0.14, p  > .05). Post-hoc analyses using Tukey Honest 

Significant Difference method indicated that for factor methods, all four methods had 

significant differences compared to no missing CONTROL at a = .05 (Table 1). The
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method SPLINE was the worst; there was no significantly different between the method 

APPROX and LOCF and no significantly different between the method LOCF and 

OMIT. For factor percentage, the effect of missing values on the forecast can be divided 

into two significant different groups. One group was 5%, 30% and 50% and the other 

was 20%, 40% and 70%, (Table 2).

The results for estimated AR values

• When the true AR-MA values were under level 2 (^ = 0.1 and 9 = 0.9), only factor 

methods affected the bias of estimated AR values (F(4, 29970) = 5408, p  < .001), factor 

percentage (F(5, 29970) =1.41, p  = 0.22) and interaction between two factors (F(20, 

29970) = 0.12, p  > .05) were not statistically significant. Post-hoc analyses using Tukey 

Honest Significant Difference method indicated that for factor methods, the estimated AR 

values were biased at all four methods and CONTROL (Table 3). The estimated AR 

values from all four methods were more biased than those from no missing CONTROL at 

a = .05 and the values from SPLINE were the most biased (Table 3). For factor 

percentage, there were no significant different effect on the bias of estimated AR values 

between 5%, 20%, 30%, 40%, 50%, and 70% (Table 4).

The results for estimated MA values

• When the true AR-MA values were under level 2 (^ = 0.1 and 9 = 0.9), only factor 

methods affected the bias of estimated MA values (F(4, 29970) = 11986, p  < .001), factor 

percentage (F(5, 29970) =1.65, p  = 0.14) and interaction between two factors (F(20, 

29970) = 0.50, p  > .05) were not statistically significant. Post-hoc analyses using Tukey 

Honest Significant Difference method indicated that for factor methods, the estimated
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MA values from all four methods and CONTROL were biased at a = .05 (Table 5). All 

four methods and CONTROL had significant different effect on the bias of estimated MA 

values and the estimated values from method APPROX and LOCF was the most biased at 

a = .05 (Table 5). For factor percentage, the estimated MA values from all six proportion 

of missing values were biased but there were no significant differences between all six 

proportion of missing values at a = .05 (Table 6).

2.2.3. The effect of methods and percentage of missing values on the mean MAD and the

bias of estimated AR and MA values when the true AR-MA values at level 3

The results for mean MAD values

• When the true AR-MA values were at level 3, factor methods significantly affected the 

forecast of time series in terms of mean MAD (F(4, 29970)= 5.38, p  < .001) but factor 

percentage (F(5,29970) = 0.011, p  > .05) and interaction (F(20, 29970) = 0.46, p  > .05) 

were not statistically significant. Post-hoc analyses using Tukey Honest Significant 

Difference method indicated that three methods (APPROX, LOCF and OMIT) had no 

significant difference compared to no missing CONTROL at a = .05 (Table 1). The 

method SPLINE was the worst and significantly different from the other three methods 

and CONTROL (Table 1).

The results for estimated AR values

• When the true AR-MA values were under level 3 (^ = 0.5 and 0 = 0.5), only factor 

methods affected the bias of estimated AR values (F(4, 29970) = 107.8, p  < .001) but 

factor percentage (F(5, 29970) = 0.23, p  = .95) and the interaction between two factors 

(F(20, 29970) = 0.009, p  > .05) were not statistically significant. Post-hoc analyses
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using Tukey Honest Significant Difference method indicated that for factor methods, the 

estimated AR values were biased at all four methods and CONTROL at a = .05 (Table 3). 

The estimated AR values from APPROX and SPLINE were the most biased (Table 3).

For factor percentage, there were no significant different effect on the bias of estimated 

AR values between 5%, 20%, 30%, 40%, 50%, and 70% (Table 4).

The results for estimated MA values

• When the true AR-MA values were under level 3 (^ = 0.5 and 9 = 0.5), only factor 

methods affected the bias of estimated MA values (F(4, 29970) = 497.4, p  < .001) while 

factor percentage (F(5, 29970) = 0.21, p  = .96) and the interaction (F(20, 29970) = 0.098, 

p  > .05) between two factors were not statistically significant. Post-hoc analyses using 

Tukey Honest Significant Difference method indicated that for factor methods, all four 

methods and CONTROL had significant different effect on the bias of the estimated MA 

values and the estimated values from method LOCF was the most biased at a = .05 

(Table 5). For factor percentage, the estimated MA values from all six proportion of 

missing values were biased but there were no significant differences between all six 

proportion of missing values at a = .05 (Table 6).

2.2.4. The effect of methods and percentage of missing values on the mean MAD and the

bias of estimated AR and MA values when the true AR-MA values at level 4

The simulation results for mean MAD values

• When the true AR-MA values were at level 4, factor percentage (F(5, 29970) =0.961 , p  > 

.05) and methods (F(4, 29970)= .96, p  > .05) and interaction between (F(20, 29970 = 

0.015, p > .05) did not significantly affect the forecast of time series in terms of mean
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MAD. Post-hoc analyses using Tukey Honest Significant Difference method indicated 

that for factor methods, all four methods had no significant difference compared to no 

missing CONTROL at a = .05 (Table 1). For factor percentage, there were no significant 

differences between 5%, 20%, 30%, 40%, 50% and 70%.

The simulation results for estimated AR values

• When the true AR-MA values were under level 4 (^ = 0.7 and 0 = 0.2), factor percentage 

(F(4, 29970) = 0.89, p  > .05), factor methods (F(4, 29970) = 0.49, p  > .05) and interaction 

between two factors (F(4, 29970) = 0.0035, p  > .05) did not affected the bias of estimated 

AR values (Table 3 - 4) although the estimated AR values were biased.

The simulation results for estimated MA values

• When the true AR-MA values were under level 4 (^ = 0.7 and 0 = 0.2), only factor 

method had significantly affected on the bias of estimated MA (F(5, 29970) = 46. 7, p  < 

.001) while factor percentage (F(4, 29970) = 0.73, p  > .05), and interaction between two 

factors (F(4, 29970) = 0.12, p  > .05) did not affected the bias of estimated MA values. 

Post-hoc analyses using Tukey Honest Significant Difference method indicated that for 

factor methods, all four methods and CONTROL had significant effect on the bias of the 

estimated MA values at a = .05 (Table 5). For factor percentage, the estimated MA 

values from all six proportion of missing values were biased there were no significant 

differences between all six proportion of missing values at a = .05 (Table 6).

In summary, the filling in methods and the percentages of missing values significantly affected 

the forecast of time series in term of MAD values but the effect depended on the internal 

structure of data sets (i.e. ^ and 0 values). OMIT performed best and SPLINE performed worst
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in all four methods. When the values of ̂  increased, the effect of the filling methods and the 

percentages of missing values on the forecast of time series decreased. The estimated AR and 

MA values generated from all the simulations were biased. Generally, for the estimated AR 

values, the bias was positive when ^ value was 0.1 and the bias was negative when ^ values was

0.5 and 0.7 regardless of the method used and the percentages of missing values. For the 

estimated MA values, the bias was positive only when the 9 value was 0.1 no matter what kinds 

of methods were used and what percentages of missing values were.

Applications

The GAK1 time series is a data set of temperature and salinity changes with time at different 

depths (from 0 to 250 meter below surface). However, the data are not a regular monthly time 

series since no observations were recorded in some months and multiple observations were 

recorded in other months. In order to forecast the GAK1 time series, the multiple values from 

the same month were averaged and this resulted in an irregular monthly time series, with a 

proportion of missing observation of 23.4%. The estimated AR and MA coefficients were 

approximately ^ = 0.7 and 9 = 0.2 according the fitted ARIMA (1, 0, 1) models from irregular 

data sets. Our simulation results suggest that the four filling in methods did not significantly 

affect the forecast of time series in mean MAD when ^ = 0.7 and 9 = 0.2. Therefore, we use all 

four methods to fill in the missing values and to forecast the last true observations in each time 

series and compare the methods. After filling, ARIMA (1, 0, 1) models were fit to all but the last 

three values of each series and the Mean Absolute Deviation (MAD) values were calculated 

using the 3-ahead forecasted values and last three values. The time series plots constructed from 

the filling data sets showed that the four filling methods, except OMIT, created a regular time 

series with monthly interval (Figs. 2-5). The MAD values were smaller for the method OMIT
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except the data set for salinity time series at the surface, indicating OMIT generally performed 

better than the other three methods (Table 7). The MADs from the data sets at 250 meters were 

much smaller than those at the surface (Table 7). Therefore, the forecasting of temperature and 

salinity time series from the 250 meters measurement was better than those from the surface 

(Table 7). Salinity time series forecasting were better than temperature time series because of 

smaller MADs (Table 7). These results suggest that the proportion of missing values may not be 

the only factor to affect the forecast of the time series, the variance of temperature and salinity 

time series at 250 meters was smaller than the one at the surface and the variance of salinity time 

series was smaller than the ones of temperature time series. This may be one of the reasons to 

explain the smaller MADs for the data sets of salinity, and for the data sets of temperature and 

salinity at the 250 meters blow surface.

In the applications, the MAD values from method SPLINE and APPROX were higher than the 

ones from the methods LOCF and OMIT in three of four data sets, confirming the results from 

simulations that effects of methods SPLINE and APPROX on forecast of time series were 

significantly different than those of methods LOCF and OMIT.

Conclusions

The overall goal of this project was to investigate whether the four filling methods (APPROX, 

SPLINE, LOCF and OMIT) affected the forecasting of time series, and apply them to the GAK1 

time series. Our overall conclusions are as follows:

• The irregular data set can be regularized by filling in the missing values using the four 

methods tested in this project but the method chosen would depend on the structure of the

18



data set (the true coefficients values of AR and MA) and to a lesser degree on the 

proportion of missing values.

• APPROX may be used to fill missing values of time series when the true coefficient AR 

values are greater than 0.5 and 0.7 without significantly affecting the ARIMA 

forecasting. The mean MAD values from APPROX are the second highest in all four 

simulations.

• SPLINE is the worst among four methods. Our simulations show that SPLINE can be 

used in one of the four simulations (only when the true coefficient AR-MA values are at 

level 4: ^ = 0.7 and 0 = 0.2). The mean MAD values are always the highest in all four 

simulations.

• LOCF can be used to fill the missing values when the true coefficient AR-MA values are 

at level 3 (^ = 0.5 and 0 = 0.5) and 4 (^ = 0.7 and 0 = 0.2). The mean MAD values are the 

third highest in all simulations.

• OMIT can be used in three of four simulated conditions in this project and its 

performance is the best among the four methods. The only simulation that does not 

perform well is when the true coefficient AR-MA value is at level 2 (^ = 0.1 and 0 = 0.9).

• The estimated AR and MA values from ARIMA models are biased for all four methods 

and CONTROL in the simulations. For the estimated AR values, the bias was positive 

when ^ value was 0.1 and the bias was negative when ^ values was 0.5 and 0.7. For the 

estimated MA values, the bias was positive only when the 0 value was 0.1.

• In the application, the forecasting results from the fitted models show that OMIT has the 

lowest MAD of the four methods. This confirms the result from the simulations that 

OMIT is the best method to fill the missing values in this project. The better
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performance for forecast of the data sets from the 250 meters below the surface and of 

data sets from salinity may relate to the internal structure of the data sets.

Forecasting time series data is important because these data often provide the foundation for 

decision models. Selecting the correct and best models to use to forecast is also important. In 

this project, the ARIMA model is the only model selected to test the effect of missing 

observations on the forecasting. In the future, more models should be selected to test and the 

time series with trend should also be included to determine the effect of missing values on 

forecasting and compare with the current research.
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Table 1. Tukey Honest Significant Difference tests show the effect of filling methods on Mean

MADs at different true AR-MA values and o2 =1

Level AR-MA

methods

APPROX SPLINE LOCF OMIT Control

1 0.1-0.1 0.84 (b) 0.88(a) 0.83 (b) 0.82 (c) 0.81 (c)

2 0.1-0.9 1.08 (b) 1.16 (a) 1.07 (bc) 1.05 (c) 1.02 (d)

3 0.5-0.5 1.07 (b) 1.14 (a) 1.06 (b) 1.06 (b) 1.04 (b)

4 0.7-0.2 0.04 (a) 0.04 (a) 0.04 (a) 0.04 (a) 0.04 (a)

Note: the MAD values are means from 1000 replications. Different letters show the differences

between the methods and the same letters indicate values that are not significant different

according to Tukey Honest Significance Difference tests at a  = .05.
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Table 2. Tukey Honest Significant Difference tests show the effect of the proportion of missing

values on Mean MADs at different true AR-MA values and o2 =1

Level AR-MA

Percentage of missing values

5% 20% 30% 40% 50% 70%

1 0.1-0.1 0.84 (abc) 0.83 (bc) 0.85 (a) 0.82 (c) 0.85 (ab) 0.83 (bc)

2 0.1-0.9 1.11 (a) 1.04 (b) 1.11 (a) 1.04 (b) 1.11 (a) 1.04 (b)

3 0.5-0.5 0.74 (a) 0.71 (a) 0.74 (a) 0.71 (a) 0.73 (a) 0.70 (a)

4 0.7-0.2 0.04 (a) 0.04 (a) 0.04 (a) 0.04 (a) 0.04 (a) 0.04 (a)

Note: the MAD values are means from 1000 replications. Different letters show the differences

between the percentages of missing values and that the same letters indicates values that are not

significantly different according to Tukey Honest Significant Different tests at a  = .05.
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Table 3. Tukey Honest Significant Difference tests show the effect of the filling methods on the

bias of estimated AR at different true AR-MA values and o2 =1

Level AR-MA

methods

APPROX SPLINE LOCF OMIT Control

1 0.1-0.1 0.27 (a) 0.22 (b) 0.25 (a) -0.05 (d) -0.021 (c)

2 0.1-0.9 0.33 (b) 0.36 (a) 0.29 (c) 0.02 (d) -0.006 (e)

3 0.5-0.5 -0.049 (a) -0.051 (a) -0.08 (b) -0.16 (c) -0.16 (c)

4 0.7-0.2 -0.67 (a) -0.67 (a) -0.67 (a) -0.67 (a) -0.67 (a)

Note: the values are means of AR bias from 1000 replications. Different letters show the

differences between the methods and that the same letters indicates values that are not

significantly different according to Tukey Honest Significant Difference tests at a  = .05.
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Table 4 Tukey Honest Significant Difference tests show the effect of the proportion of missing

values on bias of estimated AR at different true AR-MA values and o2 =1

Level AR-MA

Percentage of missing values

5% 20% 30% 40% 50% 70%

1 0.1-0.1 0.15 (a) 0.12 (b) 0.14 (a) 0.12 (b) 0.15 (a) 0.12 (b)

2 0.1-0.9 0.20 (a) 0.20 (a) 0.20 (a) 0.20 (a) 0.20 (a) 0.20 (a)

3 0.5-0.5 -0.10 (a) -0.10 (a) -0.10 (a) -0.10 (a) -0.10 (a) -0.10 (a)

4 0.7-0.2 -0.67 (a) -0.67 (a) -0.67 (a) -0.67 (a) -0.67 (a) -0.67 (a)

Note: the values are means of AR bias from 1000 replications. Different letters show the

differences between the percentages and that the same letters indicate values that are not

significantly different according to Tukey Honest Significant Different tests at a  = .05.
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Table 5. Tukey Honest Significant Different tests show the effect of the filling methods on bias

of MA at different true AR-MA values and o2 =1

Level AR-MA

methods

APPROX SPLINE LOCF OMIT Control

1 0.1-0.1 0.84 (b) 0.88 (a) 0.82 (bc) 0.82 (c) 0.91 (c)

2 0.1-0.9 -0.38 (d) -0.12 (c) -0.55 (d) -0.06 (b) 0.008 (a)

3 0.5-0.5 -0.20 (d) -0.024 (a) -0.34 (e) -0.11 (b) -0.15 (c)

4 0.7-0.2 -0.19 (b) -0.18 (a) -0.19 (b) -0.19 (b) -0.19 (b)

Note: the values are means of MA bias from 1000 replications. Different letters show the

differences between the methods and that the same letters indicate values that are not

significantly different according to Tukey Honest Significant Difference tests at a  = .05.
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Table 6. Tukey Honest Significant Difference tests show the effect of the proportion of missing

values on estimated MA at different true AR-MA values and o2 =1

Level AR-MA

Percentage of missing values

5% 20% 30% 40% 50% 70%

1 0.1-0.1 0.84 (abc) 0.83 (bc) 0.85 (a) 0.82 (c) 0.85 (ab) 083 (bc)

2 0.1-0.9 -0.22 (a) -0.22 (a)) -0.22 (a)) -0.22 (a) -0.22 (a) -0.22 (a)

3 0.5-0.5 -0.16 (a) -0.17 (a) -0.16 (a) -0.17 (a) -0.16 (a) -0.17 (a)

4 0.7-0.2 -0.19 (a) -0.19 (a) -0.19 (a) -0.19 (a) -0.19 (a) -0.19 (a)

Note: the values are means of MA bias from 1000 replications. Different letters show the

differences between the percentages of missing values and the same letters indicate values that

are not significantly different according to Tukey Honest Significant Difference tests at a  = .05.



Table 7. MAD values from four filling methods for GAK1 time series data sets according to 3- 

ahead forecasting values

28

filling methods

data sets APPROX SPLINE LOCF OMIT

Temperature time series at surface 2.48 2.67 2.4 2.4

Salinity time series at surface 1.24 1.17 1.14 1.32

Temperature time series at 250 meters 0.68 0.65 0.65 0.65

Salinity time series at 250 meters 0.098 0.10 0.098 0.097
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Figure 1. The flowchart shows the procedure of simulation.
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Figure 2. Temperature time series (GAK1 dataset from the surface) filled with four different 

methods and their 3-ahead forecasts with a 95% confident level. GAK1 time series was 

transformed into a regular time series by filling it with the average values for the months with 

multiple observations and filling with APPROX, SPLINE, LOCF and OMIT for the months with 

missing observations. ARIMA (1, 0, 1) was used to fit the model and to forecast.



31

APPROX SPLINE

E

TOCO

E

TOCO

0 20 40 60 80 100 120 0 20 40 60 80 100 120

LOCF OMIT

E

TOCO

E

CNCO

OCO

00CN
TO
w  8  - l

":;rCN

0 20 40 60 80 100 120

A

v

~r~
20

~r~
40

~r~
60 80 100

Figure 3. Salinity time series (GAK1 dataset from the surface) filled with four different methods 

and their 3-ahead forecasts with a 95% confident level. GAK1 time series was transformed into a 

regular time series by filling it with the average values for the months with multiple observations 

and filling with APPROX, SPLINE, LOCF and OMIT for the months with missing observations. 

ARIMA (1, 0, 1) was used to fit the model and to forecast.
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Figure 4. Temperature time series (GAK1 dataset from the depth of 250 meters) filled with four 

different methods and their 3-ahead forecasts with a 95% confident level. GAK1 time series was 

transformed into a regular time series by filling with the average values for the months with 

multiple observations and filling values for the months with missing observations with PPROX, 

SPLINE, LOCF and OMIT. ARIMA (1, 0, 1) was used to fit the model and to forecast.
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Figure 5. Salinity time series (GAK1 dataset from the depth of 250 meters) filled with four 

different methods and their 3-ahead forecasts with a 95% confident level. GAK1 time series was 

transformed into a regular time series by filling it with the average values for the months with 

multiple observations and filling it for the months with missing observations with APPROX, 

SPLINE, LOCF and OMIT. ARIMA (1, 0, 1) was used to fit the model and to forecast.


