306 research outputs found

    Reviews on Mechanisms of In Vitro

    Get PDF
    It is widely acknowledged that the excessive reactive oxygen species (ROS) or reactive nitrogen species (RNS) induced oxidative stress will cause significant damage to cell structure and biomolecular function, directly or indirectly leading to a number of diseases. The overproduction of ROS/RNS will be balanced by nonenzymatic antioxidants and antioxidant enzymes. Polysaccharide or glycoconjugates derived from natural products are of considerable interest from the viewpoint of potent in vivo and in vitro antioxidant activities recently. Particularly, with regard to the in vitro antioxidant systems, polysaccharides are considered as effective free radical scavenger, reducing agent, and ferrous chelator in most of the reports. However, the underlying mechanisms of these antioxidant actions have not been illustrated systematically and sometimes controversial results appeared among various literatures. To address this issue, we summarized the latest discoveries and advancements in the study of antioxidative polysaccharides and gave a detailed description of the possible mechanisms

    Multivariate Time-Varying G

    Get PDF

    An efficient YOLO v3-based method for the detection of transmission line defects

    Get PDF
    The UAV inspection method is gradually becoming popular in transmission line inspection, but it is inefficient only through real-time manual observation. Algorithms are available to achieve automatic image identification, but the detection speed is slow, and video image processing is not possible. In this paper, we propose a fast detection method for transmission line defects based on YOLO v3. The method first establishes a YOLO v3 target detection model and obtains the a priori size of the target candidate region by clustering analysis of the training sample library. The training process of the model is accelerated by adjusting the loss function to adjust the learning direction of the model. Finally, transmission line defect detection was achieved by building a transmission line defect sample library and conducting training. The test results show that compared with other deep learning models, such as Faster R-CNN and SSD, the improved model based on YOLO v3 has a huge speed advantage and the detection accuracy is not greatly affected, which can meet the demand for automatic defect recognition of transmission line inspection videos

    Noise analysis of the atomic superheterodyne receiver based on flat-top laser beams

    Full text link
    Since its theoretical sensitivity is limited by quantum noise, radio wave sensing based on Rydberg atoms has the potential to replace its traditional counterparts with higher sensitivity and has developed rapidly in recent years. However, as the most sensitive atomic radio wave sensor, the atomic superheterodyne receiver lacks a detailed noise analysis to pave its way to achieve theoretical sensitivity. In this work, we quantitatively study the noise power spectrum of the atomic receiver versus the number of atoms, where the number of atoms is precisely controlled by changing the diameters of flat-top excitation laser beams. The results show that under the experimental conditions that the diameters of excitation beams are less than or equal to 2 mm and the read-out frequency is larger than 70 kHz, the sensitivity of the atomic receiver is limited only by the quantum noise and, in the other conditions, limited by classical noises. However, the experimental quantum-projection-noise-limited sensitivity this atomic receiver reaches is far from the theoretical sensitivity. This is because all atoms involved in light-atom interaction will contribute to noise, but only a fraction of them participating in the radio wave transition can provide valuable signals. At the same time, the calculation of the theoretical sensitivity considers both the noise and signal are contributed by the same amount of atoms. This work is essential in making the sensitivity of the atomic receiver reach its ultimate limit and is significant in quantum precision measurement

    Detection of Hepatitis B virus in serum and liver of chickens

    Get PDF
    Hepatitis B virus (HBV) is one of the most important human pathogens. Its existence in food animals could present a significant threat to public health. The objective of this study was to determine if HBV is present in serum and liver of chickens. A total of 129 serum samples from broiler chickens were collected for the detection of HBV antigens and antibodies, and 193 liver samples were tested for HBV DNA sequence by PCR and for the existence of HBV antigens by immunohistochemistry. The overall prevalence of HBsAg, anti-HBs, anti-HBc was 28.68%, 53.49%, 17.05%, respectively, whereas HBeAg, anti-HBe were barely detectable. Three serum samples were found to be positive for both HBsAg and HBeAg. Further analysis of these samples with transmission electron microscopy (TEM) revealed two morphologic particles with 20 nm and 40 nm in diameter, which were similar to small spherical and Danes particles of HBV. The viral DNA sequence identified in two of the chicken livers shared 92.2% of one known HBV strain and 97.9% nucleotide sequence of another HBV strain. Our results showed the existence of HBV in chickens. This would present a significant risk to people who work with live chickens or chicken products if HBV found in chicken could be confirmed to be the same as human HBV

    Quantum scaling atomic superheterodyne receiver

    Full text link
    Measurement sensitivity is one of the critical indicators for Rydberg atomic radio receivers. This work quantitatively studies the relationship between the atomic superheterodyne receiver's sensitivity and the number of atoms involved in the measurement. The atom number is changed by adjusting the length of the interaction area. The results show that for the ideal case, the sensitivity of the atomic superheterodyne receiver exhibits a quantum scaling: the amplitude of its output signal is proportional to the atom number, and the amplitude of its read-out noise is proportional to the square root of the atom number. Hence, its sensitivity is inversely proportional to the square root of the atom number. This work also gives a detailed discussion of the properties of transit noise in atomic receivers and the influence of some non-ideal factors on sensitivity scaling. This work is significant in the field of atom-based quantum precision measurements

    Structural characterization of an α-1, 6-linked galactomannan from natural Cordyceps 2 sinensis

    Get PDF
    An α-1, 6-linked galactomannan was isolated and purified from natural Cordyceps sinensis. The fine structure analysis of this polysaccharide was elucidated based on partial acid hydrolysis, monosaccharide composition, methylation and 1D/2D nuclear magnetic resonance (NMR) spectroscopy. Monosaccharide composition analysis revealed that this polysaccharide was mainly composed of galactose (68.65%), glucose (6.65%) and mannose (24.02%). However, after partial acid hydrolysis the percentages of galactose, glucose and mannose were changed to 3.96%, 13.82% and 82.22%, respectively. The molecular weight of this polysaccharide was 7207. Methylation and NMR analysis revealed that this galactomannan had a highly branched structure, mainly consisted of a mannan skeleton and galactofuranosyl chains. The structure of galactofuranosyl part was formed by alternating (1 → 5)-lined β-Galf and (1 → 6)-liked β-Galf or a single (1 → 6)-liked β-Galf, attaching to the O-2 and O-4 of the mannose chain, and terminated at β-T-Galf. The mannan core was revealed by analyzing the partial acid hydrolysate of the galactomannan and the structure was composed of (1 → 6)-linked α-Manp backbone, with substituted at C-2 by short chains of 2-substituted Manp or Galf branches

    Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes

    Get PDF
    Background The mitochondrial genome from upland cotton, G. hirsutum, was previously sequenced. To elucidate the evolution of mitochondrial genomic diversity within a single genus, we sequenced the mitochondrial genome from Sea Island cotton (Gossypium barbadense L.). Methods Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genome was sequenced with Solexa using paired-end, 90 bp read. The clean reads were assembled into contigs using ABySS and finished via additional fosmid and BAC sequencing. Finally, the genome was annotated and analyzed using different softwares. Results The G. barbadense (Sea Island cotton) mitochondrial genome was fully sequenced (677,434-bp) and compared to the mitogenome of upland cotton. The G. barbadensemitochondrial DNA contains seven more genes than that of upland cotton, with a total of 40 protein coding genes (excluding possible pseudogenes), 6 rRNA genes, and 29 tRNA genes. Of these 75 genes, atp1, mttB, nad4, nad9, rrn5, rrn18, and trnD(GTC)-cp were each represented by two identical copies. A single 64 kb repeat was largely responsible for the 9 % difference in genome size between the two mtDNAs. Comparison of genome structures between the two mitochondrial genomes revealed 8 rearranged syntenic regions and several large repeats. The largest repeat was missing from the master chromosome in G. hirsutum. Both mitochondrial genomes contain a duplicated copy of rps3 (rps3-2) in conjunction with a duplication of repeated sequences. Phylogenetic and divergence considerations suggest that a 544-bp fragment of rps3 was transferred to the nuclear genome shortly after divergence of the A- and D- genome diploid cottons. Conclusion These results highlight the insights to the evolution of structural variation between Sea Island and upland cotton mitochondrial genomes
    corecore