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Taking full advantage of the strengths of 𝐺-𝐻 distribution, Copula function, and GARCH model in depicting the return
distribution of financial asset, we construct the multivariate time-varying𝐺-𝐻Copula GARCHmodel which can comprehensively
describe “asymmetric, leptokurtic, and heavy-tail” characteristics, the time-varying volatility characteristics, and the extreme-tail
dependence characteristics of financial asset return. Based on the conditional maximum likelihood estimator and IFM method,
we propose the estimation algorithm of model parameters. Using the quantile function and simulation method, we propose the
calculation algorithm of VaR on the basis of this model. To apply this model on studying a real financial market risk, we select
the SSCI (China), HSI (Hong Kong, China), TAIEX (Taiwan, China), and SP500 (USA) from January 3, 2000, to June 18, 2010, as
the samples to estimate the model parameters and to measure the VaRs of various index risk portfolios under different confidence
levels empirically. The results of the application example are in line with the actual situation and the risk diversification theory of
portfolio. To a certain extent, these results also justify the feasibility and effectiveness of the multivariate time-varying𝐺-𝐻 Copula
GARCHmodel in depicting the return distribution of financial assets.

1. Introduction

Financial market risk has always been one of the hottest
topics in the field of financial investment, and many financial
researchers put forward many different financial market risk
measurement methods. Among them, Value-at-Risk (VaR)
management technology is an assessment and measurement
method of financial risk that has risen in recent years, playing
an increasingly important role in the risk management and
investment decision. It has been widely adopted by the major
banks, nonbank financial intermediaries, corporations, and
financial regulators in the world and has become the standard
of risk measurement and risk management in financial
industry. Accurate calculation of VaR is one of the keys
to estimate the probability distribution of future return on
financial assets. Usually, it is assumed that financial asset
returns are independent of each other and obey the normal
distribution in the calculation of VaR, but the movement of
financial asset return in the financial market is extremely
complex. The return of all kinds of financial assets usually

does not satisfy the normal distribution hypothesis. However,
it often shows “asymmetric, leptokurtic, and heavy-tail”
characteristics [1–4]. At the same time, various financial asset
returns do not satisfy the multivariate normal distribution
hypothesis and present the extreme-tail dependence. On this
occasion, a large error would be made by using normal
distribution to fit financial asset return, and the estimation
of the VaR may be overestimated or underestimated. To
solve this problem, many scholars have proposed a lot of
leptokurtic and heavy-tail distributions in recent years, such
as the logistic distribution, Student’s 𝑡-distribution, and the
𝐺-𝐻 distribution. The logistic distribution and Student’s 𝑡-
distribution can comprehensively describe the leptokurtic
characteristics of financial asset return series, but they could
notmake a good explanation for the heavy-tail characteristics
of financial asset return series [5]. The 𝐺-𝐻 distribution can
comprehensively describe the asymmetric, leptokurtic, and
heavy-tail characteristics of financial asset return series and
it has a good fitting of the univariate unconditional return
distribution of some financial assets; however, it could not

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 286014, 9 pages
http://dx.doi.org/10.1155/2015/286014



2 Mathematical Problems in Engineering

reflect the time-varying volatility characteristics of financial
asset return and the extreme-tail dependence characteristics
of various financial assets return [6, 7]. Meanwhile, Copula
function can connect the joint distribution and the marginal
distribution of multiple random variables to construct flex-
ible multivariate distribution functions, which can be used
to measure the extreme-tail dependence of multiple financial
assets return. GARCH model can comprehensively describe
the time-varying volatility characteristics of financial asset
return. Therefore, building the multivariate time-varying 𝐺-
𝐻 Copula GARCH Model by combining the 𝐺-𝐻 distribu-
tion with Copula function and GARCH model can not only
comprehensively describe the “asymmetric, leptokurtic, and
heavy-tail” characteristics, the time-varying volatility, and
extreme-tail dependence characteristics of the financial asset
return and make measurement of VaR more accurately, but
also enrich and expand the risk measurement theory and
method of financial market theoretically and improve the
risk control ability of investors, corporations, financial insti-
tutions, and policy authorities and reduce their unnecessary
losses in practice.

The 𝐺-𝐻 distribution, Copula function, and GARCH
model, as well as the financial risk measurement model
based on them, have been researched in the existing relevant
literatures. A lot of innovative research results with reference
value have been brought out. Zhu and Pan [8] proposed
three kinds of 𝐺-𝐻 VaR methods based on the portfolio
gains, losses, and extreme losses according to the statistical
characteristics of 𝐺-𝐻 distribution. Their empirical results
showed that this method is superior to the commonly used
delta-normal method. Kuester et al. [9] believed that the 𝐺-
𝐻 distribution can describe skewness and kurtosis of the
financial asset return simultaneously and it plays a very
important role of VaR measurement of financial asset return.
Degen et al. [10] discussed the application of𝐺-𝐻distribution
in operational riskmeasurement. Jondeau andRockinger [11],
Rodriguez [12], Fischer et al. [13], and Sun et al. [14] combined
time series model with various Copulas functions by using
the Sklar theorem to build a lot of highly flexible multivariate
time-varying models for risk measurement of portfolios. Liu
et al. [15] proposed a GARCH-𝑀model with a time-varying
coefficient of the risk premium.Their study indicated that the
coefficient of the risk premium varies with the time, and even
in a mature market the conditional skewness in the return
distribution is negatively correlated with the time-varying
coefficient of the risk premium. Wen et al. [16] built a 𝐷-
GARCH-𝑀 model by separating investors’ return into gains
and losses on the basis of the characteristics of investors’
risk preference.They found that investors become risk averse
when they gain and risk-seeking when they lose, which
effectively explains the inconsistent risk-return relationship.
And the degrees of investors’ risk aversion and risk-seeking
are both in direct proportion to the value of gains and losses,
respectively. Wen et al. [17] adopted aggregative indices of
14 representative stocks around the world as samples and
established a TVRA-GARCH-𝑀 model to investigate the
influence of prior gains and losses on current risk attitude.
The empirical results indicated that the prior gains increase
people’s current willingness to take risk asset at the whole

market level. Huang et al. [18] combined Student’s 𝑡-marginal
distribution with Archimedean Copula functions to build the
conditional Copula GARCH model. They used this model
to estimate the VaR of portfolios. Ghorbel and Trabelsi [19]
built the conditional extremum Copula GARCH model by
using extreme value theory (EVT) and measured the risk of
financial asset according to this model. Chollete et al. [20]
used multivariate regime-switching Copula function to build
international financial asset return model and accordingly
put forward the VaR calculation method. Huggenberger and
Klett [21] proposed a measurement model of multivari-
ate risk asset return VaR based on 𝐺-𝐻 distribution and
Copula function. They used DAX30 (Germany), FTSE100
(UK), and CAC40 (French) from January 2000 to May
2010 as samples to test empirically. Wang et al. [22] applied
the Gumbel Copula function in multivariate Archimedean
Copula functions family to construct the joint distribution
function which can describe the actual distribution and the
correlation of various financial asset returns. They also used
the Monte Carlo simulation technology to analyze the port-
folios VaR and its composition under different confidence
levels. The result showed that using the multidimensional
Gumbel Copula function to construct the risk measurement
model of financial asset can make the assets chosen by
investors more robust, and it can also help investors to
diversify and control the overall risk of the portfolios. Dai
and Wen [23] proposed a computationally tractable robust
optimization method for minimizing the CVaR of a portfolio
under a general affine data perturbation uncertainty set.
And they presented some numerical experiments with real
market data to illustrate the behavior of robust optimiza-
tion model. Liu et al. [24] proposed a pricing model for
convertible bonds based on the utility-indifference method
and got access to the empirical results by use of Information
Technology. Furthermore, using the proposed theoretical
model, they presented an empirical pricing study of China’s
market. They found that the theoretical prices are higher
than the actual market prices 0.24–4.58% and the utility-
indifference prices are better than the Black-Scholes (B-S)
prices.

Based on the aforementioned analyses, the VaR is still
the mainstream measurement method of financial mar-
ket risk. In order to achieve the purpose of measuring
VaR more precisely, it has been the hot issue of existing
research literatures to construct the distribution functions
as comprehensive as possible to describe the “asymmetric,
leptokurtic, and heavy-tail” characteristics, the time-varying
volatility characteristics, and the extreme-tail dependence
characteristics of financial asset return through a variety of
mathematicalmethods. However, in the process of construct-
ing the return distribution model and measuring VaR of
financial asset, existing results only grasp some characteristics
of financial asset return distribution. They are not able to
comprehensively describe the “asymmetric, leptokurtic, and
heavy-tail” characteristics, the time-varying volatility charac-
teristics, and the extreme-tail dependence characteristics of
the financial asset return.The rationality and accuracy of VaR
calculated based on the existing distribution models have a
large space for further improvement.
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In this paper, we would take full advantage of the
strengths of𝐺-𝐻 distribution, Copula function, andGARCH
model in depicting the return distribution of financial asset to
build multivariate time-varying𝐺-𝐻Copula GARCHmodel
which can simultaneously describe “asymmetric, leptokurtic,
and heavy-tail” characteristics, the time-varying volatility
characteristics, and the extreme-tail dependence character-
istics of financial asset return and propose the estimation
method of model parameters and the calculation algorithm
of VaR. Then, this paper selects the SSCI (China), HSI
(Hong Kong, China), TAIEX (Taiwan, China), and SP500
(USA) from January 3, 2000, to June 18, 2010, as samples to
estimate the parameters and calculate the VaRs of various
index portfolios under different confidence levels.

2. 𝐺-𝐻 Distribution, Copula Function,
and Its Tail Dependence Index

2.1. 𝐺-𝐻 Distribution

2.1.1. 𝐺 Distribution. Assuming that random variable 𝑍

obeys the standard normal distribution and 𝑔 is a real
number, then the random variable 𝑌𝑔 = 𝐺𝑔(𝑧) obeys 𝐺

distribution. Consider

𝐺𝑔 (𝑧) =
𝑒
𝑔𝑧

− 1
𝑔

, 𝑧 ∼ 𝑁 (0, 1) , (1)

where 𝑔 controls the skewness of 𝐺 distribution. When 𝑔 →

0, 𝐺𝑔(𝑧) → 𝑧 and 𝐺 distribution tends to be symmetric.
With the increase of the absolute value of 𝑔, the degree of
asymmetry increases. Changing the sign of 𝑔 can change
the asymmetric direction of 𝐺 distribution, but it does not
change its degree of asymmetry.

2.1.2. 𝐻 Distribution. Assuming that random variable 𝑍

obeys the standard normal distribution and ℎ is a real
number, then the random variable 𝑌ℎ = 𝐻ℎ(𝑧) obeys 𝐻

distribution. Consider

𝐻ℎ (𝑧) = 𝑒
ℎ𝑧

2
/2
, 𝑧 ∼ 𝑁 (0, 1) . (2)

𝐻 distribution stretches the tail of the standard normal
distribution. ℎ controls the tail heaviness of 𝐻 distribution.
The larger the ℎ is, the heavier the tail is. Because 𝐻ℎ(𝑧)

is an even function, 𝐻 distribution is symmetric. But the
heaviness of its tail changes compared to the standard normal
distribution.

2.1.3. 𝐺-𝐻 Distribution. The random variable 𝑌𝑔,ℎ can be
obtained by introducing both functions 𝐺𝑔(𝑧) and 𝐻ℎ(𝑧) to
revise standard normal random variable 𝑍. Consider

𝑌𝑔,ℎ = 𝐺𝑔 (𝑧)𝐻ℎ (𝑧) =
𝑒
𝑔𝑧

− 1
𝑔

𝑒
ℎ𝑧

2
/2
. (3)

Then, 𝑋𝑔,ℎ can be obtained through linear transformation of
𝑌𝑔,ℎ. Consider

𝑋𝑔,ℎ = 𝐴+𝐵
𝑒
𝑔𝑧

− 1
𝑔

𝑒
ℎ𝑧

2
/2
, 𝑧 ∼ 𝑁 (0, 1) . (4)

The distribution of the random variable𝑋𝑔,ℎ obeys the𝐺-
𝐻 distribution. 𝐴, 𝐵, 𝑔, and ℎ are real numbers. 𝑔 describes
the asymmetry of 𝐺-𝐻 distribution, and ℎ describes the
heavy-tail characteristics of 𝐺-𝐻 distribution. Obviously, (3)
is a special form of (4). The random variable 𝑌𝑔,ℎ in (3)
is the random variable of 𝐺-𝐻 distribution after central
standardization.

2.2. Copula Function and Its Tail Dependence Index. Assum-
ing that marginal distribution of random vector 𝑢𝑖 = 𝐹𝑖(𝑥𝑖)

(𝑖 = 1, 2, . . . , 𝑝) obeys uniformdistribution𝑈(0, 1), according
to the Sklar theorem, the joint distribution function of 𝑃-
dimensional random vectors 𝐹(𝑥1, . . . , 𝑥𝑝) can be repre-
sented as the following formula:

𝐹 (𝑥1, . . . , 𝑥𝑝) = 𝐶 (𝐹1 (𝑥1) , . . . , 𝐹𝑝 (𝑥𝑝)) , (5)

where 𝐶 is the Copula function of 𝐹, which is a hyper-
cube [0, 1]𝑝 multivariate density function defined on 𝑃-
dimensional space R𝑝. If the marginal distribution is contin-
uous, there is a unique Copula function 𝐶. Then

𝐶 (𝑢1, . . . , 𝑢𝑝) = 𝐹 (𝐹
−1
1 (𝑢1) , . . . , 𝐹

−1
𝑝

(𝑢𝑝)) . (6)

On the contrary, given 𝑃-dimensional Copula func-
tion 𝐶(𝑢1, . . . , 𝑢𝑝) and its marginal distribution function
𝐹1(𝑥1), . . . , 𝐹𝑝(𝑥𝑝), the density function of 𝑃-dimensional
joint distribution function is

𝑓 (𝑥1, . . . , 𝑥𝑝) = 𝑐 (𝐹1 (𝑢1) , . . . , 𝐹𝑝 (𝑢𝑝))

𝑝

∏

𝑖=1
𝑓𝑖 (𝑥𝑖) . (7)

If 𝑓𝑖(𝑥𝑖) is the edge density, 𝑐(𝑢1, . . . , 𝑢𝑝) denotes Copula
density derived from (6). Thus,

𝑐 (𝑢1, . . . , 𝑢𝑝) =

𝑓 (𝐹
−1
1 (𝑢1) , . . . , 𝐹

−1
𝑝

(𝑢𝑝))

∏
𝑝

𝑖=1𝑓𝑖 (𝐹
−1
𝑖

(𝑢𝑖))
. (8)

Since the joint distribution function of random vari-
ables defines the correlation among its components, Copula
function determines the dependent structure among random
variables uniquely. The upper tail index 𝜆𝑢 and lower tail
index 𝜆𝑙 of tail dependence indicators can be defined as
follows:

𝜆𝑢 = lim
𝑞→ 1

1 − 2𝑞 + 𝑐 (𝑞, 𝑞)

1 − 𝑞
,

𝜆𝑙 = lim
𝑞→ 0

𝑐 (𝑞, 𝑞)

𝑞
.

(9)

According to Nelsen [25], Gauss Copula function gen-
erated by multivariate normal distribution function whose
correlation matrix is R can be represented as follows:

𝐶
𝐺𝑢

R (𝑢1, . . . , 𝑢𝑝)

= ∫

Φ
−1
1 (𝑢1)

−∞

⋅ ⋅ ⋅ ∫

Φ
−1
𝑝

(𝑢
𝑝

)

−∞

1

√(2𝜋)𝑝 |R|

exp{
−u󸀠R−1u

2
}𝑑u,

(10)
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where u = (𝑢1, . . . , 𝑢𝑝) and Φ
−1 is the inverse function

of single normal distribution. Because the Gauss Copula
function does not have the characteristics of tail dependence,
we often use the𝑇-Copula function whose degree of freedom
is 𝜂 and correlation matrix is R to measure tail dependence
structure of risk asset in empirical analysis; that is,

𝐶
𝑡

𝜂,R (𝑢1, . . . , 𝑢𝑝)

= ∫

𝑡
−1
𝜂

(𝑢1)

−∞

⋅ ⋅ ⋅ ∫

𝑡
−1
𝜂

(𝑢
𝑝

)

−∞

Γ ((𝜂 + 𝑝) /2) (1 + u󸀠R−1u/2)
−(𝜂+𝑝)/2

Γ (𝜂/2)√(𝜋𝜂)
𝑝
|R|

𝑑u,
(11)

where 𝑡
−1
𝜂

is the inverse function of simple standard Student’s
𝑡-distribution whose degree of freedom is 𝜂. When 𝜂 → ∞,
𝑇-Copula function degenerates to Gauss Copula function. Its
tail index 𝜆𝑢 = 𝜆𝑙 = 0; that is, the tail is independent. The tail
index of 𝑇-Copula function is

𝜆𝑢 = 𝜆𝑙 = 2𝑡𝜂+1 (−

√(𝜂 + 1) (1 − 𝜌)

√1 + 𝜌
) , (12)

where 𝑡𝜂+1 is simple standard Student’s 𝑡-distribution whose
degree of freedom is 𝜂 + 1. Considering that the innovation
impacts on the price of risk asset in varying degrees at differ-
ent times, 𝜂 and 𝜌 should have time-varying characteristics.
For this reason, tail index also has the same characteristics.

3. Multivariate Time-Varying 𝐺-𝐻 Copula
GARCH Model

Let r𝑡 = (𝑟1,𝑡, . . . , 𝑟𝑝,𝑡) denote return time series of 𝑝 risk
assets. The prior information set before time 𝑡 is

I𝑡−1 = {r𝑡−1, h𝑡−1, r𝑡−2, h𝑡−2, . . .} =

𝑝

∏

𝑖=1
I𝑖,𝑡−1, (13)

where I𝑖,𝑡−1 = {𝑟𝑖,𝑡−1, ℎ𝑖,𝑡−1, 𝑟𝑖,𝑡−2, ℎ𝑖,𝑡−2, . . .}. ℎ𝑖,𝑡 is conditional
volatility of 𝑟𝑖,𝑡 about single asset prior information set I𝑖,𝑡−1.
Let 𝐶(⋅ | I𝑡−1) denote 𝑃-dimensional conditional Copula
function and 𝐹𝑖(𝑟𝑖,𝑡 | I𝑖,𝑡−1) be the conditional distribution
of the 𝑖th component. According to Sklar theorem, the
conditional joint distribution of 𝑝 risk assets return is

𝐹 (r𝑡 | I𝑡−1)

= 𝐶 (𝐹1 (𝑟1,𝑡 | I1,𝑡−1) , . . . , 𝐹𝑝 (𝑟𝑝,𝑡 | I𝑝,𝑡−1) | I𝑡−1) .

(14)

Numerous empirical studies show that the risk asset
return series obey GARCH (1, 1) model. Based on this,
assuming that 𝑟𝑖,𝑡 satisfies the GARCH (1, 1) model, we can
get the following 𝐺-𝐻 Copula GARCH (1, 1) model which
describes the time-varying dependence structure of 𝑝 risk

assets return after filtering the time-varying characteristics of
single series:

𝑟𝑖,𝑡 = 𝜇𝑖 + 𝜀𝑖,𝑡, 𝑖 = 1, 2, . . . , 𝑝,

𝜀𝑖,𝑡 = √ℎ𝑖,𝑡𝑧𝑖,𝑡,

ℎ𝑖,𝑡 = 𝜛𝑖 +𝛼𝑖𝜀
2
𝑖,𝑡−1 +𝛽𝑖ℎ𝑖,𝑡−1,

𝐹 (z𝑡 | I𝑡−1)

= 𝐶 (𝐹1 (𝑧1,𝑡 | I1,𝑡−1) , . . . , 𝐹𝑝 (𝑧𝑝,𝑡 | I𝑝,𝑡−1) | I𝑡−1) ,

(15)

where the parameters satisfy the conditions 𝜛𝑖, 𝛼𝑖, 𝛽𝑖 > 0
and 𝛼𝑖 + 𝛽𝑖 < 1. These parameters can ensure the stability
of conditional volatility series. The innovation series {z𝑡}
obey 𝐺-𝐻 distribution whose parameter is (𝑔, ℎ) in (4). But
in order to simplify the analysis, we only consider 𝐺-𝐻
distribution after central standardization given by (3) and its
density function is written as 𝑓𝑌

𝑖

(𝑦𝑖). The Copula function
𝐶(⋅ | I𝑡−1) is given by (11) and its density 𝑐(⋅) can be
represented as the following time-varying𝑇-Copula function
whose degree of freedom is 𝜂:

𝑐
𝑡

𝜂,𝜌
𝑡

(𝑢1,𝑡, . . . , 𝑢𝑝,𝑡)

=

𝑓
𝑡

𝜂,𝜌
𝑡

(𝑓
−1
V1 (𝑢1,𝑡) , . . . , 𝑓

−1
V
𝑝

(𝑢𝑝,𝑡))

∏
𝑝

𝑖=1𝑓𝜂 (𝑓
−1
V
𝑖

(𝑢𝑖,𝑡))

,

(16)

where 𝑓
𝑡

𝜂,𝜌
𝑡

denotes the multivariate Student’s 𝑡-distribution
whose degree of freedom is 𝜂 and time-varying correlation
matrix is 𝜌

𝑡
= (𝜌𝑖,𝑗,𝑡)𝑝×𝑝, and

𝜌𝑖,𝑖,𝑡 = 1,

𝑓V
𝑖

(𝑢𝑖,𝑡) =
Γ ((V𝑖 + 1) /2)
Γ (V𝑖/2)√V𝑖𝜋

(1+
𝑢
2
𝑖,𝑡

V𝑖
)

−(V
𝑖

+1)/2

.

(17)

The joint density function of 𝑝 risk assets return is

𝑓 (y | u, h𝑡) = 𝑐
𝑡

𝜂,𝜌
𝑡

(𝑥1,𝑡, . . . , 𝑥𝑝,𝑡)

𝑝

∏

𝑖=1
𝑓𝑌
𝑖

(𝑦𝑖)

= Γ (
𝜂 + 𝑝

2
) Γ (

𝜂

2
)

𝑝−1
(1+

x󸀠
𝑡
𝜌
𝑡
x𝑡

𝜂
)

−(𝜂+𝑝)/2

⋅ (
󵄨󵄨󵄨󵄨𝜌𝑡

󵄨󵄨󵄨󵄨)
−1/2
𝑝

∏

𝑖=1
(1 +

𝑥
2
𝑖,𝑡

𝜂
)

(𝜂+1)/2 𝑝

∏

𝑖=1
𝑓𝑌
𝑖

(𝑦𝑖) ,

(18)
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where x𝑡 = (𝑥1,𝑡, . . . , 𝑥𝑝,𝑡) and 𝑥𝑖,𝑡 = 𝑡
−1
𝜂

(𝑡V
𝑖

(𝜀𝑖,𝑡)). Then the
likelihood function of overall samples is

𝑙 (𝜃 | y) =

𝑇

∏

𝑡=1
Γ (

𝜂 + 𝑝

2
) Γ (

𝜂

2
)

𝑝−1

⋅ (1+
x󸀠
𝑡
𝜌
𝑡
x𝑡

𝜂
)

−(𝜂+𝑝)/2

(
󵄨󵄨󵄨󵄨𝜌𝑡

󵄨󵄨󵄨󵄨)
−1/2

Γ (
𝜂 + 1
2

)

−𝑝

⋅

𝑝

∏

𝑖=1
(1+

𝑥
2
𝑖,𝑡

𝜂
)

(𝜂+1)/2 𝑝

∏

𝑖=1
𝑓𝑌
𝑖

(𝑦𝑖) ,

(19)

where 𝜃 = {(𝜇𝑖, 𝜛𝑖, 𝛼𝑖, 𝛽𝑖, V𝑖)
𝑝

𝑖=1, 𝑎, 𝑏,𝜌𝑡, 𝜂} and x𝑡 = (𝑥1,𝑡, . . . ,
𝑥𝑝,𝑡).The value of correlationmatrix 𝜌

𝑡
is similar to the time-

varying correlation matrix of multivariate Copula GARCH
model proposed by Jondeau and Rockinger [11]. That is, 𝜌

𝑡

satisfies the following evolution equation

𝜌
𝑡
= (1− 𝑎− 𝑏)𝜌+ 𝑎Ψ𝑡−1 + 𝑏𝜌

𝑡−1, (20)

where 0 ≤ 𝑎, 𝑏 ≤ 1, 𝑎 + 𝑏 ≤ 1. 𝜌 is a positive definite matrix
whose main diagonal elements are 1 and other elements are
static correlation coefficients.Ψ𝑡−1 is a 𝑝×𝑝matrix, in which
every element

𝜓𝑖,𝑗,𝑡−1 =
∑
𝑚

𝑙=1 𝑥𝑖,𝑡−𝑙𝑥𝑗,𝑡−𝑙

√∑
𝑚

𝑙=1 𝑥
2
𝑖,𝑡−𝑙

√∑
𝑚

𝑙=1 𝑥
2
𝑗,𝑡−𝑙

, 𝑖, 𝑗 = 1, 2, . . . , 𝑝 (21)

denotes the correlation coefficients of 𝑝 risk asset returns,
(𝑚 ≥ 𝑝 + 2), 𝑥𝑡 = (𝑥1,𝑡, . . . , 𝑥𝑝,𝑡) = (𝑡

−1
V1 (𝑓V1(𝑧1,𝑡)), . . . ,

𝑡
−1
V
𝑝

(𝑓V
𝑝

(𝑧𝑝,𝑡))). Each element 𝜌𝑖,𝑗,𝑡 of 𝜌𝑡 satisfies −1 ≤ 𝜌𝑖,𝑗,𝑡 ≤ 1.

4. Parameter Estimation Algorithm of
the Multivariate Time-Varying 𝐺-𝐻 Copula
GARCH Model

On the basis of Huggenberger and Klett [21], this section will
use dynamic correlation matrix 𝜌

𝑡
instead of static correla-

tion matrix in the multidimensional discrete-time stochastic
process to estimate the parameters of multivariate time-
varying𝐺-𝐻CopulaGARCHmodel established in Section 3.
Assuming thatΘ denotes the parameter space defined by the
model and (r1, r2, . . . , r𝑇) denotes the log return samples of
𝑃-dimensional risk asset which is generated by multivariate
conditional density function𝑓𝜌

𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, 𝜃0), where 𝜃0 ∈

Θ, I𝑡−1 is 𝜎 algebra of time 𝑡 − 1 and before, the maximum
likelihood estimation of parameter vector 𝜃 can be calculated
by the following equation:

𝜃̂ = argmax
𝜃∈Θ

𝑇

∑

𝑡=1
log𝑓𝜌

𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, 𝜃) , (22)

where 𝑓𝜌
𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, 𝜃) can be obtained by calculating the
derivative of (5). Let 𝑐𝜃 denote Copula density function.Thus

𝑓𝜌
𝑡

|I
𝑡−1

(𝑟1,𝑡, . . . , 𝑟𝑝,𝑡 | I𝑡−1, 𝜃)

= 𝑐𝜃 (𝐹1,𝑡 (𝑟1,𝑡, 𝜃) , . . . , 𝐹𝑝,𝑡 (𝑟𝑝,𝑡, 𝜃))

⋅

𝑝

∏

𝑖=1
𝑓𝑖,𝑡 (𝑟𝑡,𝑖, 𝜃) .

(23)

The probability density function and distribution func-
tion can be obtained in the process ofmodel built in Section 3.
Using the IFM method proposed by Joe [26], we can convert
(22) into an optimization problem. Therefore, we need to
divide the parameter vector 𝜃 into two subparameter vectors
𝜃𝑐 and 𝜃𝑟: that is 𝜃 = (𝜃𝑐, 𝜃𝑟), where 𝜃𝑟 = (𝜃𝑟1

, . . . , 𝜃𝑟
𝑝

),
𝜃𝑟
𝑖

is the parameter vector of 𝑖th marginal distribution, and
𝜃𝑐 is the parameter vector of Copula function. Because IFM
method is a two-step likelihood estimation method, the
model parameters should be estimated through the following
two steps.

Step 1. Solving the maximum likelihood estimator of the
parameter vector of each risk asset return,

𝜃̂𝑟
𝑖

= argmax
𝜃
𝑟

𝑖

𝑇

∑

𝑡=1
log𝑓𝑖,𝑡 (𝑟𝑖,𝑡 | 𝜃𝑟

𝑖

) 𝑖 = 1, 2, . . . , 𝑝. (24)

Thismeans that we need to estimate parameters vector 𝜃̂𝑟
𝑖

of 𝑝 distributions continuously.

Step 2. Taking each 𝜃̂𝑟
𝑖

into the likelihood equation (22), we
can obtain the parameter vector 𝜃𝑐 of Copula function and its
maximum likelihood estimator 𝜃̂𝑐. Consider

𝜃̂𝑐

= argmax
𝜃
𝑐

𝑇

∑

𝑡=1
log 𝑐𝜃

𝑐

(𝐹1,𝑡 (
󵄨󵄨󵄨󵄨𝑟1,𝑡

󵄨󵄨󵄨󵄨 𝜃̂𝑟1
) , . . . , 𝐹𝑝,𝑡 (

󵄨󵄨󵄨󵄨󵄨
𝑟𝑝,𝑡

󵄨󵄨󵄨󵄨󵄨
𝜃̂𝑟
𝑝

)) .

(25)

In themaximum likelihood estimation,weneed to use the
derivative function of the density function of 𝐺-𝐻 marginal
distribution with respect to the component of parameter
vector. Because the density function of 𝐺-𝐻 marginal distri-
bution is very complex, this paper uses the implicit function
differentiation rule to take its derivative. The estimator 𝜃̂2𝑠
of parameter vector 𝜃 obtained by the above-mentioned
two-step method obeys normal distribution consistently
and asymptotically under the standard regularity conditions
proposed inHuggenberger andKlett [21], Joe [26], andPatton
[27]; that is,

√𝑇(𝜃̂2𝑠,𝑇 − 𝜃0)
𝑑

󳨀→
𝑇→∞

𝑁(0,Ω−1ΣΩ) , (26)
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where

Ω = −𝐸(
𝜕
2

𝜕𝜃𝜕𝜃
󸀠
log𝑓𝜌

𝑡

|I
𝑡−1

(𝜌
𝑡
| I𝑡−1, 𝜃0)) ,

Σ = 𝐸(
𝜕

𝜕𝜃
(log𝑓𝜌

𝑡

|I
𝑡−1

(𝜌
𝑡
| I𝑡−1, 𝜃0))

⋅
𝜕

𝜕𝜃
(log𝑓𝜌

𝑡

|I
𝑡−1

(𝜌
𝑡
| I𝑡−1, 𝜃0))

󸀠

) .

(27)

Because the matrixes Σ and Ω can be estimated by the
estimated parameter vector consistently,

Ω̂𝑇 = −𝑇
−1
𝑇

∑

𝑡=1

𝜕
2

𝜕𝜃𝜕𝜃
󸀠
log𝑓𝜌

𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, 𝜃̂2𝑠,𝑇) ,

Σ̂𝑇 = 𝑇
−1
𝑇

∑

𝑡=1

𝜕

𝜕𝜃
(log𝑓𝜌

𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, 𝜃̂2𝑠,𝑇))

⋅
𝜕

𝜕𝜃
(log𝑓𝜌

𝑡

|I
𝑡−1

(r𝑡 | I𝑡−1, 𝜃̂2𝑠,𝑇))
󸀠

.

(28)

Thus (26) can be used to calculate the standard deviation
of the estimator 𝜃̂2𝑠,𝑇.

5. VaR Algorithm Based on the Multivariate
Time-Varying 𝐺-𝐻 Copula GARCH Model

After estimating the parameters of multivariate time-varying
𝐺-𝐻 Copula GARCH model, VaR of the risk portfolio can
be measured. VaR of risk portfolio indicates the expected
maximum losses of risk portfolio held by investors within a
given confidence level and a certain period of time. Assuming
that r𝑡 = (𝑟1,𝑡, . . . , 𝑟𝑝,𝑡) (𝑡 = 1, 2, . . . , 𝑇) are the return samples
of 𝑝 risk assets which satisfy themultivariate time-varying𝐺-
𝐻 Copula GARCH (1, 1)model in Section 3 and∑

𝑝

𝑖=1 𝜆𝑖𝑟𝑖,𝑡 is
the portfolio of 𝑝 risk assets in which the weight of the risk
asset 𝑖 is 𝜆𝑖 (𝑖 = 1, 2, . . . , 𝑝) that can be less than 0 because of
permitting short-purchasing and short-selling the risk assets
and meet ∑

𝑝

𝑖=1 𝜆𝑖 = 1, the VaR of risk portfolio under
confidence level 𝑞 at time 𝑡 should satisfy Pr(∑𝑝

𝑖=1 𝜆𝑖𝑟𝑖,𝑡 ≤

VaR𝑡) = 𝑞. The confidence level 𝑞 can reflect the different
risk preferences of investors or financial institutions to a
certain extent. Choosing a larger confidence level means that
investors or financial institutions have greater risk aversion,
and they hope to get a forecast result with larger probability.

Although the conditional distributions of 𝑟1,𝑇+1, 𝑟2,𝑇+1,
. . . , 𝑟𝑝,𝑇+1 can be calculated through the known marginal
distributions, it is very difficult to calculate quantile from
time-varying Copula density function, and it is adverse to
measure and calculate the VaR of risk portfolio. Therefore,
this paper measures the dynamic risk of portfolio and its esti-
mation value approximately through simulating𝐺-𝐻Copula
GARCH model. Based on the parameters 𝜃(𝑛) of the sample,
the return series of risk assets {[𝑟

(𝑛,𝑚)

1,1+𝑇, . . . , 𝑟
(𝑛,𝑚)

𝑝,1+𝑇], 𝑚 =

1, . . . ,𝑀} and the one-step measurement and estimation
values of VaR of their portfolios can be obtained through esti-
mating (ℎ(𝑛)1,𝑇+1, . . . , ℎ

(𝑛+1)
𝑝,𝑇+1) according to the volatility equation

Table 1: Moment estimation results of the daily log return of SSCI,
HSI, TAIEX, and SP500.

Types of stock index Mean Std. Skewness Kurtosis
SSCI 2.5078𝑒 − 004 0.0181 −0.2144 7.4467
HSI 7.4505𝑒 − 005 0.0177 −0.2765 11.6866
TAIEX 3.9511𝑒 − 005 0.0140 −0.9091 17.2823
SP500 −9.7173𝑒 − 005 0.0148 −0.3701 12.0177

of𝐺-𝐻 Copula GARCHmodel and calculating 𝜌
(𝑛)

𝑇+1 by using
Copula dynamic evolution equation and then repeating the
following algorithm for 𝑀 times (𝑀 ≥ 3𝑝).

Step 1. It is simulating 𝑀 groups of random vectors
[𝑢
(𝑛,𝑚)

1,𝑇+1, . . . , 𝑢
(𝑛,𝑚)

𝑝,𝑇+1] according to the multivariate 𝑇-Copula
density function whose degree of freedom is 𝜂(𝑛) and correla-
tion matrix is 𝜌(𝑛)

𝑇+1.

Step 2. Calculating 𝑟
(𝑛,𝑚)

𝑖,𝑇+1 = 𝜇
(𝑛)

𝑖
+ 𝑧
(𝑛,𝑚)

𝑖,𝑇+1√ℎ
(𝑛)

𝑖,𝑇+1, 𝑖 = 1, . . . , 𝑝.

Step 3. Firstly, one calculates the return rate of risk portfolio
that is equal to ∑

𝑝

𝑖=1 𝜆𝑖𝑟
(𝑛,𝑚)

𝑖,𝑇+1 , 𝑚 = 1, 2, . . . ,𝑀. Secondly, one
evaluates its 𝑞-quantile VaR(𝑛)

𝑇+1. Thirdly, one measures the
VaR of the risk portfolio by VaR𝑇+1 = (1/𝑁)∑

𝑁

𝑛=1 VaR
(𝑛)

𝑇+1.

6. Application of the Multivariate Time-
Varying 𝐺-𝐻 Copula GARCH Model

6.1. Date Sample and Moment Estimation. USA and China,
as the most developed capitalism country and the largest
developing country in the world, respectively, rank top two of
the world economy. Their stock markets should have strong
representation in the world. At the same time, due to the
historical reasons, there exist several regions with different
political systems such as Mainland China, Hong Kong,
Taiwan, and Macau in Greater China. Macau is similar to
Hong Kong on the whole. For the above-mentioned reasons,
this paper selects the SSCI (China), HSI (HongKong, China),
TAIEX (Taiwan, China), and SP500 (USA) from January
3, 2000, to June 18, 2010, as data samples to estimate the
VaR of various index portfolios under different confidence
levels by using the multivariate time-varying 𝐺-𝐻 Copula
GARCHmodel.The data comes fromYahoo Financewebsite:
http://finance.yahoo.com/.

The moment estimation results of the daily log return of
SSCI, HSI, TAIEX, and SP500 are shown in Table 1.

Table 1 shows that the skewness of daily log returns of
SSCI, HSI, TAIEX, and SP500 is less than 0 and their kurtosis
is much larger than that of standard normal distribution
which is equal to 3. These results demonstrate that the
daily log returns of these indices have the right skew and
leptokurtic characteristics. Therefore, it is appropriate to fit
the daily log return of SSCI, HSI, TAIEX, and SP500 by
applying 𝐺-𝐻 distribution which has leptokurtic, heavy-tail
characteristics, and it is reasonable to apply the multivariate
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Table 2: Parameter estimates of the four-variate time-varying G-H
Copula GARCH (1, 1) model based on SSCI index risk asset.

Model parameters 𝜇
1

𝜔
1

𝛼
1

𝛽
1

Estimate 0.00025∗∗∗ 0.0551∗∗∗ 0.0617∗∗∗ 0.8583∗∗∗

𝑇-statistic 4.8653 4.6851 6.5764 4.4009
Note: ∗∗∗ in the table denotes that the parameter is significant at 1% level.

Table 3: Parameter estimates of the four-variate time-varying G-H
Copula GARCH (1, 1) model based on HSI index risk asset.

Model parameters 𝜇
2

𝜔
2

𝛼
2

𝛽
2

Estimate 0.000075
∗∗∗

0.0342
∗∗∗

0.0586
∗∗∗

0.8987
∗∗∗

𝑇-statistic 4.6539 4.8518 6.1796 6.6079
Note: ∗∗∗ in the table denotes that the parameter is significant at 1% level.

Table 4: Parameter estimates of the four-variate time-varying G-H
Copula GARCH (1, 1) model based on TAIEX index risk asset.

Model parameters 𝜇
3

𝜔
3

𝛼
3

𝛽
3

Estimate 0.00040∗∗∗ 0.0343
∗∗∗

0.0517
∗∗∗

0.9054
∗∗∗

𝑇-statistic −6.4538 4.3523 5.9817 6.5935
Note: ∗∗∗ in the table denotes that the parameter is significant at 1% level.

Table 5: Parameter estimates of the four-variate time-varying G-H
Copula GARCH (1, 1) model based on SP500 index risk asset.

Model parameters 𝜇
4

𝜔
4

𝛼
4

𝛽
4

Estimate −0.0001
∗∗∗

0.0251
∗∗∗

0.0861
∗∗∗

0.8738
∗∗∗

𝑇-statistic −3.3873 5.2684 7.6324 6.3786
Note: ∗∗∗in the table denotes that the parameter is significant at 1% level.

time-varying 𝐺-𝐻 Copula GARCH model to measure their
VaR.

6.2. Parameter Estimates of the Multivariate Time-Varying
𝐺-𝐻 Copula GARCH Model. Based on the parameter esti-
mation algorithm proposed in Section 4, the parameters of
the multivariate time-varying 𝐺-𝐻 Copula GARCH model
with SSCI, HSI, TAIEX, and SP500 can be estimated. The
parameter estimation results are shown in Tables 2, 3, 4, 5,
and 6.

From Tables 2 to 6, the following results can be obtained:

(1) Consider 𝛼1 + 𝛽1 = 0.92, 𝛼2 + 𝛽2 = 0.9573, 𝛼3 +

𝛽3 = 0.9571, and 𝛼4 + 𝛽4 = 0.9599. This shows that
the volatility persistence of Shanghai stock market is
the strongest, Taiwan and Hong Kong stock market
rank second and third, and the volatility persistence
of USA stock market is minimum. It indicates that
the investors’ expectation of risk compensation in
the emerging markets represented by China’s stock
market is stronger than that in the mature markets
represented by the USA’s stock market and the price
discovery efficiency of innovation in the emerging
markets represented by China’s stock market is lower
than that in the mature markets represented by USA’s
stockmarket. In addition, the sumof the coefficients𝛼

and𝛽 is very close to 1, which indicates that the impact
and shock of innovation on the index volatility of each
stock market has a long memory.

(2) The degree of freedom 𝜂 = 14.57 and the correlation
coefficients 𝜌𝑖𝑗 of 𝑇-Copula in Table 6 show that
there exists the strongest correlation between Hong
Kong stock market and Taiwan stock market, and
the correlation between Shanghai stock market and
Hong Kong stock market is also relatively large.
The above-mentioned facts indicate that the extreme
events probably result in the phenomena that Hong
Kong stock market and Taiwan stock market are up
and down synchronously, and there exist comoving
behaviors between Shanghai stock market and Hong
Kong stock market.

(3) The time-varying coefficient 𝑏 = 0.987 indicates
that the time-varying correlation coefficient of 𝐺-
𝐻 Copula GARCH model has a long memory; that
is, the impact of historical values of each other’s
correlation coefficient among SSCI, HSI, TAIEX, and
SP500 on the expected correlation is relatively large.

6.3. VaR Measurement Based on the Multivariate Time-
Varying 𝐺-𝐻 Copula GARCH Model. Based on the multi-
variate time-varying𝐺-𝐻 Copula GARCHmodel with SSCI,
HSI, TAIEX, and SP500 whose parameters have been esti-
mated, the VaRs of various index portfolios under different
confidence levels can be measured. The measurement results
are shown in Table 7.

From Table 7, the following results can be obtained:

(1) The inequalities VaR (SSCI) < VaR (HSI) < VaR
(SP500) < VaR (TAIEX) can be satisfied for any
confidence level. It shows that the risk of extreme
losses in Shanghai stock market is higher than that in
Hong Kong stock market, Taiwan stock market, and
USA stock market. This measurement result is in line
with the actual situation that thematurity of Shanghai
stockmarket is far lower than that ofHongKong stock
market, Taiwan stock market, and USA stock market.

(2) For any confidence level, the extreme losses risk of
the investors who equally allocate their total assets
among SSCI, HSI, TAIEX, and SP500 is lower than
that of the investors who put their total assets into one
index asset. The extreme losses risk of the investors
increases with the concentration of risk asset in the
index portfolios. This measurement result is consis-
tent with the risk diversification theory of portfolio.

7. Conclusion

Considering the “asymmetric, leptokurtic, and heavy-tail”
characteristics, the time-varying volatility characteristics,
and extreme-tail dependence characteristics of financial
asset return, this paper combined the 𝐺-𝐻 distribution,
Copula function, and GARCH model to construct a mul-
tivariate time-varying 𝐺-𝐻 Copula GARCH model which
can comprehensively describe the “asymmetric, leptokurtic,
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Table 6: Estimates of correlation coefficients, time-varying parameters, and degree of freedom of four-variate time-varying G-H Copula
GARCH (1, 1) model based on SSCI, HSI, TAIEX, and SP500.

Model parameters 𝜌
12

𝜌
13

𝜌
14

𝜌
23

𝜌
24

𝜌
34

a b 𝜂

Estimate 0.256
∗∗∗

0.139
∗∗∗

0.021
∗∗∗

0.528
∗∗∗

0.193
∗∗∗

0.128
∗∗

0.008
∗∗∗

0.987
∗∗∗

14.57
∗∗∗

𝑇-statistic 13.51 11.02 3.431 5.763 9.564 2.529 5.179 3.561 6.871
Note: ∗∗∗ and ∗∗ in the table denote that the parameter is significant at 1% and 5% level, respectively.

Table 7: VaR estimation results based on the four-variate time-varying G-H Copula GARCHmodel with SSCI, HSI, TAIEX, and SP500.

Ratio of index portfolio 1% 5% 10% 15% Ratio of index portfolio 1% 5% 10% 15%
0.25 : 0.25 : 0.25 : 0.25 −0.0303 −0.0165 −0.0116 −0.0086 0.25 : 0.25 : 0.25 : 0.25 −0.0303 −0.0165 −0.0116 −0.0086
0.50 : 0.00 : 0.25 : 0.25 −0.0329 −0.0177 −0.0128 −0.0093 0.25 : 0.50 : 0.00 : 0.25 −0.0361 −0.0189 −0.0132 −0.0100

0.75 : 0.00 : 0.00 : 0.25 −0.0418 −0.0226 −0.0157 −0.0116 0.25 : 0.75 : 0.00 : 0.00 −0.0426 −0.0236 −0.0165 −0.0123

1.00 : 0.00 : 0.00 : 0.00 −0.0536 −0.0285 −0.0199 −0.0150 0.00 : 1.00 : 0.00 : 0.00 −0.0491 −0.0269 −0.0190 −0.0138

0.25 : 0.25 : 0.25 : 0.25 −0.0303 −0.0165 −0.0116 −0.0086 0.25 : 0.25 : 0.25 : 0.25 −0.0303 −0.0165 −0.0116 −0.0086
0.25 : 0.25 : 0.50 : 0.00 −0.332 −0.0176 −0.0119 −0.0093 0.00 : 0.25 : 0.50 : 0.50 −0.0359 −0.0181 −0.0128 −0.0094

0.00 : 0.25 : 0.75 : 0.00 −0.0403 −0.0196 −0.0127 −0.0097 0.00 : 0.00 : 0.25 : 0.75 −0.0402 −0.0206 −0.0146 −0.0108

0.00 : 0.00 : 1.00 : 0.00 −0.0420 −0.0211 −0.0139 −0.0101 0.00 : 0.00 : 0.00 : 1.00 −0.0425 −0.0230 −0.0157 −0.0119

Note: the ratio of index portfolio is ranked by the sequence of SSCI : HSI : TAIEX : SP500 in Table 7.

and heavy-tail” characteristics, the time-varying volatility
characteristics, and extreme-tail dependence characteristics
of financial asset return. It proposed the parameter estimation
algorithm of the multivariate time-varying 𝐺-𝐻 Copula
GARCH model by using condition maximum likelihood
method and IFM two-step method. An algorithm was con-
structed to calculate VaR by using the quantile function
and the simulation method based on 𝐺-𝐻 Copula GARCH
model. In addition, this paper selected the daily log return
of SSCI (China), HSI (Hong Kong, China), TAIEX (Taiwan,
China), and SP500 (USA) from January 3, 2000, to June
18, 2010, as samples to estimate the parameters of the
multivariate time-varying 𝐺-𝐻 Copula GARCH model, and
it also estimated theVaR for various index risk asset portfolios
under different confidence levels.The research results showed
that the multivariate time-varying 𝐺-𝐻 Copula GARCH
model constructed in this paper could reasonably estimate
and measure the extreme losses of risk portfolios in financial
market, and the measurement results were in line with the
actual situation of stock market and the risk diversification
theory of portfolio. The achievement of this paper provided
a practical and effective method for measuring the extreme
losses of financial market.
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