303 research outputs found

    Study of Valve Motion in Reciprocating Refrigerator Compressors based on the 3-D Fluid–structure Interaction Model

    Get PDF
    Â Abstract: In this paper, a 3-D fluid-structure interaction model was established to investigate the working process of the small reciprocating refrigeration compressors. According to the numerical calculation, the working process of the small reciprocating refrigeration compressor, the motion of valve and the impact velocity and the contact stress of discharge valve and suction valve were given. Experiments on a small reciprocating refrigeration compressor for testing the p-v graph were carried out .Experimental results agree well with the numeric model. The result provides a guidance to research and design the small reciprocating refrigeration compressors

    Risk-aware stochastic control of a sailboat

    Full text link
    Sailboat path-planning is a natural hybrid control problem (due to continuous steering and occasional "tack-switching" maneuvers), with the actual path-to-target greatly affected by stochastically evolving wind conditions. Previous studies have focused on finding risk-neutral policies that minimize the expected time of arrival. In contrast, we present a robust control approach, which maximizes the probability of arriving before a specified deadline/threshold. Our numerical method recovers the optimal risk-aware (and threshold-specific) policies for all initial sailboat positions and a broad range of thresholds simultaneously. This is accomplished by solving two quasi-variational inequalities based on second-order Hamilton-Jacobi-Bellman (HJB) PDEs with degenerate parabolicity. Monte-Carlo simulations show that risk-awareness in sailing is particularly useful when a carefully calculated bet on the evolving wind direction might yield a reduction in the number of tack-switches.Comment: 6 pages; 4 figure

    Investigating White-Box Attacks for On-Device Models

    Full text link
    Numerous mobile apps have leveraged deep learning capabilities. However, on-device models are vulnerable to attacks as they can be easily extracted from their corresponding mobile apps. Existing on-device attacking approaches only generate black-box attacks, which are far less effective and efficient than white-box strategies. This is because mobile deep learning frameworks like TFLite do not support gradient computing, which is necessary for white-box attacking algorithms. Thus, we argue that existing findings may underestimate the harmfulness of on-device attacks. To this end, we conduct a study to answer this research question: Can on-device models be directly attacked via white-box strategies? We first systematically analyze the difficulties of transforming the on-device model to its debuggable version, and propose a Reverse Engineering framework for On-device Models (REOM), which automatically reverses the compiled on-device TFLite model to the debuggable model. Specifically, REOM first transforms compiled on-device models into Open Neural Network Exchange format, then removes the non-debuggable parts, and converts them to the debuggable DL models format that allows attackers to exploit in a white-box setting. Our experimental results show that our approach is effective in achieving automated transformation among 244 TFLite models. Compared with previous attacks using surrogate models, REOM enables attackers to achieve higher attack success rates with a hundred times smaller attack perturbations. In addition, because the ONNX platform has plenty of tools for model format exchanging, the proposed method based on the ONNX platform can be adapted to other model formats. Our findings emphasize the need for developers to carefully consider their model deployment strategies, and use white-box methods to evaluate the vulnerability of on-device models.Comment: Published in The International Conference on Software Engineering 2024 (ICSE'24

    Neuro-Symbolic Recommendation Model based on Logic Query

    Full text link
    A recommendation system assists users in finding items that are relevant to them. Existing recommendation models are primarily based on predicting relationships between users and items and use complex matching models or incorporate extensive external information to capture association patterns in data. However, recommendation is not only a problem of inductive statistics using data; it is also a cognitive task of reasoning decisions based on knowledge extracted from information. Hence, a logic system could naturally be incorporated for the reasoning in a recommendation task. However, although hard-rule approaches based on logic systems can provide powerful reasoning ability, they struggle to cope with inconsistent and incomplete knowledge in real-world tasks, especially for complex tasks such as recommendation. Therefore, in this paper, we propose a neuro-symbolic recommendation model, which transforms the user history interactions into a logic expression and then transforms the recommendation prediction into a query task based on this logic expression. The logic expressions are then computed based on the modular logic operations of the neural network. We also construct an implicit logic encoder to reasonably reduce the complexity of the logic computation. Finally, a user's interest items can be queried in the vector space based on the computation results. Experiments on three well-known datasets verified that our method performs better compared to state of the art shallow, deep, session, and reasoning models.Comment: 17 pages, 6 figure
    • …
    corecore