145 research outputs found

    The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection

    Get PDF
    Apoptosis is a form of cell death by which the body maintains the homeostasis of the internal environment. Apoptosis is an initiative cell death process that is controlled by genes and is mainly divided into endogenous pathways (mitochondrial pathway), exogenous pathways (death receptor pathway), and apoptotic pathways induced by endoplasmic reticulum (ER) stress. The homeostasis imbalance in ER results in ER stress. Under specific conditions, ER stress can be beneficial to the body; however, if ER protein homeostasis is not restored, the prolonged activation of the unfolded protein response may initiate apoptotic cell death via the up-regulation of the C/EBP homologous protein (CHOP). CHOP plays an important role in ER stress-induced apoptosis and this review focuses on its multifunctional roles in that process, as well as its role in apoptosis during microbial infection. We summarize the upstream and downstream pathways of CHOP in ER stress induced apoptosis. We also focus on the newest discoveries in the functions of CHOP-induced apoptosis during microbial infection, including DNA and RNA viruses and some species of bacteria. Understanding how CHOP functions during microbial infection will assist with the development of antimicrobial therapies

    Sequence analysis for the complete proviral genome of subgroup J Avian Leukosis virus associated with hemangioma: a special 11 bp deletion was observed in U3 region of 3'UTR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian Leukosis virus (ALV) of subgroup J (ALV-J) belong to retroviruses, which could induce tumors in domestic and wild birds. Myelocytomatosis was the most common neoplasma observed in infected flocks; however, few cases of hemangioma caused by ALV-J were reported in recent year.</p> <p>Results</p> <p>An ALV-J strain SCDY1 associated with hemangioma was isolated and its proviral genomic sequences were determined. The full proviral sequence of SCDY1 was 7489 nt long. Homology analysis of the env, pol and gag gene between SCDY1 and other strains in GenBank were 90.3-94.2%, 96.6-97.6%, and 94.3-96.5% at nucleotide level, respectively; while 85.1-90.7%, 97.4-98.7%, and 96.2-98.4% at amino acid level, respectively. Alignment analysis of the genomic sequence of ALV-J strains by using HPRS-103 as reference showed that a special 11 bp deletion was observed in U3 region of 3'UTR of SCDY1 and another ALV-J strain NHH isolated from case of hemangioma, and the non-functional TM and E element were absent in the genome of SCDY1, but the transcriptional regulatory elements including C/EBP, E2BP, NFAP-1, CArG box and Y box were highly conserved. Phylogenetic analysis revealed that all analyzed ALV-J strains could be separated into four groups, and SCDY1 as well as another strain NHH were included in the same cluster.</p> <p>Conclusion</p> <p>The variation in envelope glycoprotein was higher than other genes. The genome sequence of SCDY1 has a close relationship with that of another ALV-J strain NHH isolated from case of hemangioma. A 11 bp deletion observed in U3 region of 3'UTR of genome of ALV-J isolated from case of hemangioma is interesting, which may be associated with the occurrence of hemangioma.</p

    A novel protein-coding ORF72.2 gene was identified from Marek's disease virus strain CVI988

    Get PDF
    Marek's disease is a highly contagious disease of poultry characterized by rapid-on set of T-cell lymphomas, which is caused by Marek's disease virus (MDV), but its pathogenic mechanism is still not very clear. Recently, some new progress were achieved in molecular character of MDV. Along with the genomic sequencing of MDV serotype 1, some novel open reading frames (ORFs) were predicted, and ORF72.2 was one of them which have no homologues in other MDV serotypes or in other alphaherpesvirus. In the study, ORF72.2 was firstly identified as a protein-coding gene by the method of reverse transcription polymerase chain reaction (RT-PCR), western blotting and indirect immunofluorescence assay. This study paved the way to conduct further studies to determine whether ORF72.2 plays a role in MDV replication and pathogenicity

    Comparative analysis of oncogenic genes revealed unique evolutionary features of field Marek's disease virus prevalent in recent years in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Marek's disease (MD) is an economically important viral disease of chickens caused by Marek's disease virus (MDV), an oncogenic herpesvirus. This disease was well controlled since the widespread use of commercial vaccines, but field MDVs have shown continuous increasing in virulence and acquired the ability to overcome the immune response induced by vaccines. Nowadays, MD continues to be a serious threat to poultry industry, isolation and characterization of MDVs are essential for monitoring changes of viruses and evaluating the effectiveness of existing vaccines.</p> <p>Results</p> <p>Between 2008 and 2010, 18 field MDV strains were isolated from vaccinated chicken flocks in Sichuan province, China. Three oncogenic genes including Meq, pp38 and vIL-8 genes of the 18 isolates were amplified and sequenced. Homology analysis showed that the deduced amino acid sequences of these three genes exhibit 95.0-98.8%, 99.3-100% and 97.0-98.5% homology respectively with these of other reference strains published in GenBank. Alignment analysis of the nucleotide and deduced amino acid sequences showed that four amino acid mutations in Meq gene and two amino acid mutations in vIL-8 gene displayed perfect regularity in MDVs circulating in China, which could be considered as features of field MDVs prevalent in recent years in China. In addition, one amino acid mutation in pp38 gene can be considered as a feature of virulent MDVs from USA, and three amino acid mutations in Meq gene were identified and unique in very virulent plus (vv+) MDVs. Phylogenetic analysis based on Meq and vIL-8 protein sequences revealed that field MDVs in China evolved independently. Virulence studies showed that CVI988 could provide efficient protection against the field MDVs epidemic recently in China.</p> <p>Conclusions</p> <p>This study and other published data in the GenBank have demonstrated the features of Meq, pp38 and vIL-8 genes of MDVs circulating in recent years in Sichuan, China. Mutations, deletions or insertions were observed in these three genes, and some mutations could be considered as the unique marks of the MDVs circulating presently in China. The paper supplies some valuable information concerning the evolution of MDV which is useful for the vaccine development and control of MD in China.</p

    Multi-radial cyclone suction dust removal technology at coal mine belt transfer points

    Get PDF
    The dust hazard and management at the belt transfer point is one of the most important issues in achieving efficient, safe and clean production in coal mines. To address the problem of dust pollution at the transfer point and to reduce the dust hazard at the transfer point, a multi-radial cyclone suction dust removal technology is proposed for the belt transfer point based on the cyclone suction theory. The technology is based on a certain number of inlets and jet angles on the side wall of the vertical drop pipe, with the suction outlet set above the drop pipe. The principle of operation is that the incoming air-flow from the side wall of the drop pipe changes direction when it meets the side wall and the inlet jets interact with each other to form an upward flowing cyclone in the drop pipe. A simulated 3D solid model and a test platform for multi-radial cyclone suction dust removal at the belt transfer point are built. A combination of numerical simulations and experimental tests is used to study the distribution of air-flow and dust transport in the transfer point. In the numerical simulation and experimental tests, eight air inlets are provided on each of the four-side walls of the drop pipe at an angle of 10° to the horizontal, and four-air inlets are provided on the guide chute, with the air inlets oriented tangential to the circle of the particle release position on the lower belt. According to the cyclonic suction theory, the greater the inlet air velocity on the drop pipe, the greater the pressure difference between the boundary of the drop pipe and the center, and the better the effect on dust collection. The simulation results show that the best inlet air speed for the multi-radial cyclone suction technology is 8 m/s, where the dust of less than 50 μm and the dust of less than 30 μm from the impact of the coal with the lower belt can be collected during the drop. Comparing the dispersion of the coal before and after falling in the test, it is concluded that the proportion of particles smaller than 50 μm in the coal on the lower belt is reduced by 47.96%, and the proportion of particles smaller than 5 μm is reduced by 44.62% after the application of the dust removal technology. It reduces the proportion of harmful particles in the coal. By measuring the dust concentration at the ends of the guide chute and at the inlet, the test determines that the best inlet air speed for the multi-radial cyclone suction dust removal technology is 8 m/s. At this time, the dust concentrations at the left and right ends of the guide chute and at the inlet are the lowest, and the dust removal efficiency is 97.71% and 99.92% respectively, and the overall dust removal efficiency at the transfer point can reach more than 95%. The study proves that the multi-radial cyclone suction dust removal technology at the transfer point can solve the problem of dust pollution , improve the working environment

    Comprehensive evolutionary analysis of growth-regulating factor gene family revealing the potential molecular basis under multiple hormonal stress in Gramineae crops

    Get PDF
    Growth-regulating factors (GRFs) are plant-specific transcription factors that contain two highly conserved QLQ and WRC domains, which control a range of biological functions, including leaf growth, floral organ development, and phytohormone signaling. However, knowledge of the evolutionary patterns and driving forces of GRFs in Gramineae crops is limited and poorly characterized. In this study, a total of 96 GRFs were identified from eight crops of Brachypodium distachyon, Hordeum vulgare, Oryza sativa L. ssp. indica, Oryza rufipogon, Oryza sativa L. ssp. japonica, Setaria italic, Sorghum bicolor and Zea mays. Based on their protein sequences, the GRFs were classified into three groups. Evolutionary analysis indicated that the whole-genome or segmental duplication plays an essential role in the GRFs expansion, and the GRFs were negatively selected during the evolution of Gramineae crops. The GRFs protein function as transcriptional activators with distinctive structural motifs in different groups. In addition, the expression of GRFs was induced under multiple hormonal stress, including IAA, BR, GA3, 6BA, ABA, and MeJ treatments. Specifically, OjGRF11 was significantly induced by IAA at 6 h after phytohormone treatment. Transgenic experiments showed that roots overexpressing OjGRF11 were more sensitive to IAA and affect root elongation. This study will broaden our insights into the origin and evolution of the GRF family in Gramineae crops and will facilitate further research on GRF function

    A lytic phage to control multidrug-resistant avian pathogenic Escherichia coli (APEC) infection

    Get PDF
    The inappropriate use of antibiotics has led to the emergence of multidrug-resistant strains. Bacteriophages (phages) have gained renewed attention as promising alternatives or supplements to antibiotics. In this study, a lytic avian pathogenic Escherichia coli (APEC) phage designated as PEC9 was isolated and purified from chicken farm feces samples. The morphology, genomic information, optimal multiplicity of infection (MOI), one-step growth curve, thermal stability, pH stability, in vitro antibacterial ability and biofilm formation inhibition ability of the phage were determined. Subsequently, the therapeutic effects of the phages were investigated in the mice model. The results showed that PEC9 was a member of the siphovirus-like by electron microscopy observation. Biological characterization revealed that it could lyse two serotypes of E. coli, including O1 (9/20) and O2 (6/20). The optimal multiplicity of infection (MOI) of phage PEC9 was 0.1. Phage PEC9 had a latent period of 20 min and a burst period of 40 min, with an average burst size of 68 plaque-forming units (PFUs)/cell. It maintained good lytic activity at pH 3-11 and 4-50°C and could efficiently inhibit the bacterial planktonic cell growth and biofilm formation, and reduce bacterial counts within the biofilm, when the MOI was 0.01, 0.1, and 1, respectively. Whole-genome sequencing showed that PEC9 was a dsDNA virus with a genome of 44379 bp and GC content of 54.39%. The genome contains 56 putative ORFs and no toxin, virulence, or resistance-related genes were detected. Phylogenetic tree analysis showed that PEC9 is closely related to E. coli phages vB_EcoS_Zar3M, vB_EcoS_PTXU06, SECphi18, ZCEC10, and ZCEC11, but most of these phages exhibit different gene arrangement. The phage PEC9 could successfully protect mice against APEC infection, including improved survival rate, reduced bacterial loads, and organ lesions. To conclude, our results suggest that phage PEC9 may be a promising candidate that can be used as an alternative to antibiotics in the control of APEC infection
    corecore