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Apoptosis is a form of cell death by which the body maintains the homeostasis of

the internal environment. Apoptosis is an initiative cell death process that is controlled

by genes and is mainly divided into endogenous pathways (mitochondrial pathway),

exogenous pathways (death receptor pathway), and apoptotic pathways induced by

endoplasmic reticulum (ER) stress. The homeostasis imbalance in ER results in ER stress.

Under specific conditions, ER stress can be beneficial to the body; however, if ER protein

homeostasis is not restored, the prolonged activation of the unfolded protein response

may initiate apoptotic cell death via the up-regulation of the C/EBP homologous protein

(CHOP). CHOP plays an important role in ER stress-induced apoptosis and this review

focuses on its multifunctional roles in that process, as well as its role in apoptosis during

microbial infection. We summarize the upstream and downstream pathways of CHOP in

ER stress induced apoptosis. We also focus on the newest discoveries in the functions of

CHOP-induced apoptosis during microbial infection, including DNA and RNA viruses and

some species of bacteria. Understanding how CHOP functions during microbial infection

will assist with the development of antimicrobial therapies.
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INTRODUCTION

The endoplasmic reticulum (ER) is an important organelle in eukaryotic cells and plays important
roles in protein synthesis, modification and processing, folding, assembly, and the transportation
of nascent peptide chains (1, 2). The ER has a strong homeostasis system and the stability of the
internal environment is the basis for the ER to achieve its functions (3). Some physiological and
pathological conditions, including changes in temperature and pH, the accumulation of damaged

Abbreviations: CHOP, C/EBP-homologous protein; ER, endoplasmic reticulum; ATF4, activating transcription factor 4;

ATF6, activating transcription factor 6; DISC, death-inducing signaling complex; DR, death receptor; eIF2α, eukaryotic

translation initiation factor 2α; IRE1, inositol-requiring enzyme 1; JNK, c-Jun N-terminal kinase 1; PERK, protein kinase

RNA-like endoplasmic reticulum kinase; ROS, reactive oxygen species; TRAIL, TNF-related apoptosis-inducing ligand;

UPR, unfolded protein response; XBP1, X-box-binding protein 1; XIAP, X-linked inhibitor of apoptosis protein; TRIB3,

pseudokinase tribbles homolog 3; p38MAPK, p38 mitogen-activated protein kinase; CaMKII, calcium-dependent protein

kinase; PDI, protein disulfide isomerase; FADD, Fas-associated death domain protein.
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DNA, contamination with toxic effluents, and infection with
viruses and bacteria can cause ER stress (4). ER stress can be
divided into three types, including the unfolded protein response
(UPR), the ER overload response, and sterol regulatory elements
combined with protein-mediated regulatory responses (5). ER
stress usually refers to the UPR, which occurs when themisfolded
or unfolded proteins in the ER increase and activate the stress
signal that transmits to the nucleus through the ER membrane.
Upon ER stress, cells mainly elicit two responses: one leading
to cellular survival and the other leading to apoptosis (6). Using
the survival pathway, cells conquer such disadvantageous effects
and maintain homeostasis through the UPR, inhibiting the
transcription of mRNA, enhancing the folding capacity of the ER,
and ERAD (ER-assisted degradation) to restore homeostasis (7).
Under chronic or overwhelming ER stress, the normal functions
of the ER fail to recover, resulting in cellular dysfunction and
apoptosis (8).

Many ER stress related diseases have been reported in
clinical populations (9, 10). When ER stress occurs with high
intensity, or it is prolonged, homeostasis is not restored and
apoptosis is induced by ER-related molecules. ER-induced
apoptosis occurs via three primary pathways, including the
IRE1/ASK1/JNK pathway, the caspase-12 kinase pathway, and
the C/EBP homologous protein (CHOP)/GADD153 pathway
(11, 12). The IRE1/ASK1/JNK pathway is important for apoptosis
in the ER and has been found active during many diseases,
such as osteoporosis, urothelial carcinoma (13, 14). The caspase-
12 kinase pathway is also involved in many diseases, neonatal
hypoxic-ischemic encephalopathy, parkinson’s disease, etc. (15–
17). The CHOP pathway plays an important role in ER
stress-induced apoptosis due to pathogenic microbial infections,
neurological diseases and neoplastic diseases.

THE STRUCTURE AND
CHARACTERIZATION OF CHOP

The CHOP protein was first identified during methyl
methanesulfonate research involving UV irradiation and
alkylation (18). CHOP belongs to the family of CCAAT/enhancer
binding proteins (C/EBPs) and is involved in the regulation
of genes that encode proteins involved in proliferation,
differentiation and expression, and energy metabolism. CHOP
is a 29 kD protein with 169 (human) or 168 (rodents) amino
acid residues. It contains two functional domains, including an
N-terminal transcriptional activation domain and a C-terminal
basic-leucine zipper (bZIP) domain (19). Deletion mutant
analyses showed that the bZIP domain plays a crucial role in
CHOP-induced apoptosis (20). Research showed that CHOP-
deficient cells were resistant to ER stress-induced apoptosis
(11, 21). CHOP deficient mouse experiments revealed that
CHOP-induced apoptosis is relevant to many diseases that cause
ER stress (22, 23). Apoptosis caused by the CHOP pathway
is becoming the focus of an increasing number of researchers
(24–26).

The collective findings of CHOP research have indicated
that this factor plays an important role in ER stress-mediated

apoptosis. Here, we summarize the recent findings on the
functions of CHOP during ER stress-induced apoptosis and
microbial infection.

THE FUNCTIONS OF CHOP IN ER
STRESS-INDUCED APOPTOSIS

Upstream Regulatory Pathway of CHOP
There are a series of precise mechanisms in cells, which ensure
the correct folding and assembly of intracellular proteins. Thus,
only correctly folded proteins can be transported out of the ER
to perform their functions. During normal physiology, CHOP
is ubiquitously expressed at very low levels (27). However,
pathological conditions or microbial infection caused ER stress
is overwhelming, the expression of CHOP rises sharply and
apoptosis is activated, and this process can occur in a wide
variety of cells (27, 28). Those processes are mainly regulated
by three factors, including protein kinase RNA-like endoplasmic
reticulum kinase (PERK), activating transcription factor 6
(ATF6), and inositol requiring protein 1 (IRE1) (11).

PERK
PERK is a transmembrane protein and an important sensor
that participates in the UPR by attenuating protein translation
and regulating oxidative stress (29). Unfolded proteins in the
ER stimulate PERK oligomerization and autophosphorylation,
and can phosphorylate eukaryotic translation initiation factor
2α (eIF2α) (29). Phosphorylation of eIF2α promotes the
transcription of ATF4, which converges on the promoters of
target genes, including CHOP, GADD34, and ATF3 (1, 30, 31).
Research shows that PERK−/−and ATF4−/−cells and eIF2α
(Ser51Ala) knock-in cells fail to induce CHOP during ER stress
(32). The PERK/ATF4/CHOP signaling pathway is considered to
play a pivotal function in inducing cell apoptosis, both in vitro
and in vivo (33–35). However, research shows that CHOP may
not fully induce cell death, and that CHOP andATF4 cooperation
is required for the induction of cell death (31).

ATF6
ATF6 is a transmembrane protein. Under ER stress, ATF6
translocates to the Golgi compartment where it is cleaved and
activated (36). When ATF6 is activated, it translocates to the
nucleus as a homo-or heterodimer and interacts with ATF/cAMP
response elements and ER stress-response elements (1). Such
complexes bind the promoters of several genes involved in
UPR (such as CHOP, GRP78, XBP1) and induce target-gene
transcription (37, 38). Along with XBP1(s), ATF6 contributes
to the augmentation of ER size and ER protein-folding capacity
through target genes. ATF6 can activate the transcription of both
CHOP and XBP-1, while XBP-1 can also regulate the expression
of CHOP. Thus, ATF6 can cooperate with XBP-1 to activate
CHOP (39).

IRE1
IRE1 is a transmembrane protein containing two functional
domains, including an N-terminal luminal sensor domain and
a C-terminal cytosolic effector (40). IRE1 contains protein
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kinase and endoribonuclease activities. Unfolded proteins in the
ER stimulate IRE1α oligomerization and autophosphorylation,
which activates the endoribonuclease activity (41). Upon
activation, IRE1α splices the substrate precursor, XBP-1, mRNA
introns to produce a mature and active XBP-1 protein (42, 43).
The active protein then binds the promoters of several genes
involved in UPR and ERAD, and regulates gene expression
(such as CHOP) to restore protein homeostasis. Thus, CHOP
expression can be upregulated by XBP1(s) (44–46). IRE1α
can stimulate the activation of the apoptotic-signaling kinase-
1 (ASK1), which then activates the downstream kinases, Jun-
N-terminal kinase (JNK) and p38 mitogen-activated protein
kinase (p38 MAPK), which cause apoptosis (40). The P38 MAP
kinase family phosphorylates Ser78 and Ser81 of CHOP, which
induces cell apoptosis (47, 48). Moreover, during tunicamycin-
induced apoptosis, the JNK inhibitor, SP600125, could suppress
CHOP upregulation and subsequent death receptor 5 (DR5)
expression, indicating that JNK activation is also involved in
the modulation of CHOP (49). JNK and p38 MAPK can also
promote the phosphorylation and activation of the pro-apoptotic
protein, BAX, to regulate cell apoptosis (50). Therefore, CHOP
can cooperate with JNK and p38MAPK to regulate cell apoptosis
(the upstream regulatory pathways of CHOP are summarized in
Figure 1).

Downstream Regulatory Pathway of CHOP
CHOP Induces Apoptosis Through

Mitochondria-Dependent Pathway
A variety of upstream pro-apoptotic signals act on the
mitochondrial membrane. Active BCL2-family proteins form
protein channels in the mitochondrial membrane and the
opening of the mitochondrial PT hole enables the apoptotic
active substances (such as cytochrome c, Smac, etc.) to be
released into the cytoplasm (51). Such events cause downstream
caspase-family proteins to activate and act on the corresponding
substrates leading to apoptosis.

As a transcription factor, CHOP can regulate the expression
of many anti-apoptotic and pro-apoptotic genes, including
genes encoding the BCL2-family proteins, GADD34, TRB-3,
and DOCs (52, 53). In the CHOP-induced apoptotic pathway,
CHOP regulates the BCL2 protein family. The BCL2 family
consists of 25 members that share up to four conserved
motifs known as BCL2 homology domains (BH1–4) (54).
The BCL2 protein family can be divided into two categories:
anti-apoptotic proteins and proapoptotic proteins (55). Anti-
apoptotic proteins mainly include BCL2, BCL-XL, MCL-1, and
BCL-W, while the proapoptotic proteins can be divided into
two categories: multidomain and BH3-only domain proteins (56,
57). Multidomain proteins include BAK, BAX, and BOK, while
the BH3-only domain proteins include BID, BIM, BAD, BIK,
NOXA, and PUMA (58, 59). The BH3-only proteins regulate cell
apoptosis mainly by inhibiting the expression of the BCL2 anti-
apoptotic protein, or promoting the expression of multidomain
proteins, such as BAX (60).

Under ER stress, CHOP can function as either a
transcriptional activator or repressor. It forms heterodimers
with other C/EBP family transcription factors via bZIP-domain

interactions to inhibit the expression of genes responsive
to C/EBP family transcription factors, while enhancing the
expression of other genes containing a specific 12–14 bp cis-
acting element (19). CHOP can downregulate the expressions of
BCL2, BCL-XL, and MCL-1, and upregulate the expression of
BIM, causing increased BAK and BAX expression (60, 61). After
BAX-BAK oligomerization, the oligomers cause the release of
apoptotic factors such as cytochrome c (Cyt-C) and apoptosis-
inducing factor (AIF) through mitochondria permeabilization,
eventually cause cell death (62).

TRB3 is an intracellular pseudokinase that modulates the
activity of the signal transduction cascade and is highly regulated
in many cells (63, 64). Research has shown that under conditions
of hypoxia and ER stress in non-cardiac cells, TRB3 increases
its expression (65). During ER stress, TRB3 is upregulated by
the ER stress-inducible transcriptional factor, ATF4-CHOP (66).
CHOP interacts with TRB3, which contributes to the induction
of apoptosis (67, 68). The binding site of CHOP overlaps the
amino acid response elements in the TRB3 promoter, and the
specific regions in CHOP and TRB3 are responsible for their
interaction (69). The expression of TRB3 can inhibit AKT
activity and has a pro-apoptotic capacity (70, 71). AKT directly
modulates the expression of caspase-3 and caspase-9, as well
as the mitochondrial pro-apoptotic proteins, BAX, and BAD
(72). TRB3 can also inhibit the anti-apoptotic activity of AKT
by inhibiting the phosphorylation of the Ser473 and Thr308
sites of AKT (63, 73). The upregulation of TRB3 expression
can be accompanied by the activation of caspase-3, thereby
enhancing apoptosis. Interfering with the expression of TRB3
partially attenuates caspase-3 activity (74, 75), and therefore,
CHOP also regulates apoptosis by up-regulating the expression
of the TRB3 gene, and directly or indirectly affecting the activity
of caspase (the endogenous pathway-induced apoptosis pathways
are summarized in Figure 2).

CHOP Induces Apoptosis Through Death-Receptor

Pathway
Cell death induced by ER stress also can be mediated through
exogenous pathways. Death receptor-mediated apoptosis occurs
via death ligands (Fas, TNF, and TRAIL) combined with death
receptors. The receptor protein, Fas-associated death domain
protein, is recruited to form a death-inducing signal complex,
which activates the cytosolic caspase-8, which then activates the
downstream caspase to induce apoptosis.

The PERK-ATF4-CHOP pathway can induce apoptosis by
binding to the death receptor pathway and upregulating the
expression of death receptor 4 (DR4) and DR5. CHOP regulates
DR4 or DR5, or both DR4 and DR5 to induce apoptosis is
dependent on the different cell types and stimulus. The TRAIL-
R1/DR4 death receptors can be activated by ER stress. CHOP
interacts with the phosphorylated transcription factor JUN to
form a complex that binds to the promoter region of DR4 in lung
cancer cells (76). In giant brain neuronal cells (GCN5), the N-
terminal domain of CHOP interacts with phosphorylated JUN to
form a complex that regulates the expression of DR4 and DR5
(76). CHOP also upregulates the expression of DR5 by binding
to the 5′-region of the DR5 gene (77). ATF3 is also involved in
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FIGURE 1 | Upstream regulatory pathway of CHOP. The three signaling branches of UPR lead to CHOP transcription. Activated PERK phosphorylates eIF2α, which

results in the translation of ATF4. Subsequently, ATF4 translocates to the nucleus, which increases the expression of CHOP and ATF3. CHOP and ATF3 then bind to

the promoters downstream genes. ATF6 translocates to Golgi apparatus, where it is activated by proteolysis. Activated ATF6 transcriptionally upregulates CHOP

expression. Additionally, ATF6 can regulate XBP-1 to activate CHOP. On one hand, the activation of IRE1α processes unspliced XBP1 mRNA to create activated

XBP1(s), which enters the nucleus and controls the expression of CHOP. On the other hand, IRE1α activates apoptotic signaling kinase 1 (ASK1), which in turn

phosphorylates p38MAPK and JNK to activate CHOP.

FIGURE 2 | The functions of CHOP in endogenous-pathway-induced apoptosis. CHOP triggers the intrinsic apoptotic pathway through the inhibition of BCL-2,

BCL-XL, MCL-1, and the upregulation of BIM, which regulates BAX-BAK-mediated mitochondrial outer membrane permeabilization. This leads to cytochrome c

release and the caspase cascade. Bag5 can reduce CHOP expression and increase Bcl-2 gene expression. CHOP can also regulate the apoptosis of cells by

up-regulating the expression of the TRB3 gene, preventing Akt phosphorylation, which inhibits the activity of caspases-3/9.
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mediating DR5 production. In a colon cancer cell model in which
the p53 gene is deleted, the ATF3 gene involved in ER is also
involved in mediating DR5 production (78).

Research shows that the CHOP-DR5 signaling sensitizes
several chemically challenged cancer cells to extrinsic apoptosis
mediated by reactive oxygen species (ROS), in vitro (79, 80).
If the ER stress is not reversible, PERK-CHOP function will
persist, permitting DR5 mRNA to rise. The accumulation
of DR5 in the ER and Golgi can drive ligand-independent
multimerization of the long splice variants of death receptor 5
(DR5L). DR5L accelerates the formation of the death-inducing
signaling complex (DISC) and activates caspase-8 (81). The
activation of caspase-8 can also cleave BID located in the
cytoplasm into tBID. tBID has powerful pro-apoptotic activity
and can act on the mitochondrial membranes with BAK and
BAX, which cause Cyt-C release. Subsequently, this leads to
apoptosis via the exogenous and the endogenous pathways
(82) (the exogenous pathway-induced apoptosis pathways are
summarized in Figure 3).

CHOP Induces Apoptosis Through Other Pathways
In addition to mediating apoptosis through the endogenous and
exogenous pathways, CHOP also mediates apoptosis through
other pathways. CHOP can increase the expression of the ERO1α
(ER reductase) gene, which catalyzes the oxidation of protein
disulfide isomerase (PDI), resulting in the production of H2O2

in the ER. The highly oxidized state of the ER (22, 83) results in
H2O2 leakage into the cytoplasm, induces the production of ROS
and a series of apoptotic and inflammatory reactions (84–86).

High ROS concentrations in the lumen of the ER activate
the IP3R1 calcium ion release channel, allowing calcium ions
to enter the cytosol. Cytoplasmic calcium promotes ROS
by activating the calcium-sensing kinase, CaMKII (calcium-
dependent protein kinase), and NOX2, a subunit of NADPH
oxidase on the cell membrane. Those factors then promote the
transcription of CHOP, resulting in apoptosis (87). This is a
positive feedback pathway. The CHOP-CaMKII pathway also
activates JNK, which is involved in ER stress-induced apoptosis
by inducing the expression of Fas, NOX2, and oxidative stress
(88, 89). In some models of diabetes, the deletion of CHOP
can inhibit the apoptosis of pancreatic beta cells, and provides
a protective mechanism to reduce the production of ERO1α,
which subsequently reduces markers of oxidative stress and the
expression of antioxidant genes (90). Moreover, ROS scavengers
can attenuate the expression of PERK/eIF2α/CHOP pathway-
related proteins (91).

The CHOP gene also directly activates GADD34 (DNA
damage protein), which combines with phosphatase 1 protein
(PP1) and dephosphorylates eIF2α, resulting in protein
translation recovery and increases of ER stress and cell apoptosis
(92, 93). Under ER stress, cells with GADD34 mutations can
significantly reduce protein complex formation compared to
normal cells.

The overexpression of CHOP can lead to cell cycle arrest
and result in cell apoptosis. At the same time, CHOP-induced
apoptosis can also trigger cell death by inhibiting the expression
of cell cycle regulatory protein, p21. The p21 protein not only

inhibits the G1 phase of the cell cycle, but also has a close
relationship with the activity of pre-apoptotic factors. Thus, the
relationship between CHOP and p21 may explain changes in
the state of the cell from adapting to ER stress to pre-apoptotic
activity (94, 95).

Under most conditions, CHOP can directly bind to the
promoters of downstream related genes, while under specific
condition, CHOP can cooperate with other transcription factors
to affect apoptosis. Recent studies have shown that Bcl-2-
associated athanogene 5 (Bag5) is over-expressed in prostate
cancer and inhibits ER stress-induced apoptosis. Overexpression
of Bag5 results in decreased CHOP and BAX expression,
and increased Bcl-2 gene expression (96). Bag5 overexpression
inhibited ER stress-induced apoptosis in the UPR by suppressing
PERK-eIF2-ATF4 and enhancing the IRE1-Xbp1 activity (97).

CHOP has also been reported to regulate the expression of
BH3-only proteins by interacting with FOXO3A (in neuronal
cells treated with tunicamycin) and the AP-1 complex protein,
cJUN, leading to its phosphorylation. Knockdown of CHOP
prevented the dephosphorylation of its downstream target
FOXO3a (Thr32) (58).

Synoptically, CHOP-dependent apoptosis is mainly mediated
by directly or indirectly altering the expression of pro-apoptotic
or anti-apoptotic genes. Collectively, the apoptotic pathways are
mediated by the downstream targets of CHOP; however, the
molecular interaction mechanisms by which this occurs remain
to be understood.

CHOP Functions During Apoptosis and
Autophagy
Autophagy is a lysosomal degradation system involving the
degradation and recycling of obsolete, damaged, or harmful
cytoplasmic materials, and organelles. Autophagy generally
precedes apoptosis under cellular stresses and the apoptotic
program is activated when such stresses exceed a critical duration
or intensity threshold (98). Here, we describe the important
roles of CHOP in ER stress induced apoptosis. Recent studies
have identified CHOP as a direct regulator of numerous genes
involved in the pro-survival autophagic process (99, 100).
CHOP has been implicated in autophagy induced by amino
acid starvation, ER stress, and infection with microorganisms
(101, 102). Research has shown that knockdown of CHOP
not only enhances tunicamycin-induced autophagy, but also
significantly attenuates ER stress-induced apoptosis in human
colon cancer cells. Moreover, CHOP modulates the induction
of autophagosomes during ER stress, as evidenced by the
inhibition of LC3-II expression and GFP-LC3B dots (103).
Another study also showed that UPR-activated CHOP elicited
complete autolysosome maturation during hepatitis C virus-
induced autophagy via an LC3B-II-dependent mechanism (104).
During amino acid starvation and ER stress, CHOP can up-
regulate the expression of autophagy-related genes at the onset,
while in the later stages of starvation, CHOP can inhibit the
occurrence of autophagy and gradually initiate apoptosis (105).
Therefore, CHOP plays a pivotal role in switching between
apoptosis and autophagy.
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FIGURE 3 | The functions of CHOP in exogenous-pathway-induced apoptosis. CHOP triggers the extrinsic apoptotic pathway through the upregulation of DR4 and

DR5. PERK can induce ATF4 expression, which results in CHOP and ATF3 expression. CHOP and ATF3 then bind to the promoters of the DR4 and DR5 genes,

upregulating their expression. TRAIL combining with DR4 and DR5 regulates the caspase 8-mediated cascade, which activates caspase3/7 to lead apoptosis. On the

other hand, Bid is cleavaged into tBid. tBid then regulates the BAX-BAK-mediated mitochondrial apoptosis pathways.

THE FUNCTIONS OF CHOP-INDUCED
APOPTOSIS DURING MICROBIAL
INFECTION

Many pathogenic microorganisms infect host cells and can cause
ER stress (106). When ER stress occurs at a high intensity or is
prolonged, homeostasis is not restored and apoptosis will occur.
Many microbes infect host cells to induce apoptosis through
regulating the expression of CHOP. CHOP-induced apoptosis
can be beneficial to the microorganisms or be detrimental to their
growth and reproduction (Table 1). Here, we summarize recent
findings in the functions of CHOP-induced apoptosis during
microbial infection.

The Functions of CHOP in Viral Infection
After viruses invade the host they must adapt to the intracellular
environment, and use host cell factors to self-replicate. The ER is
an essential organelle for virus assembly and replication, and the
replication and proliferation of the virus can affect the function
of the ER and cause ER stress. Under prolonged ER stress, cell
apoptosis is activated. Under certain conditions, apoptosis is
beneficial or essential for virus replication and the release of
virus particles. Under other conditions, apoptosis can inhibit
the proliferation and spread of the virus in host cells to protect
uninfected cells.

After DNA viruses infect host cells, CHOP plays a critical
role in apoptosis induced by ER stress. Porcine circovirus type
2 (PCV2) has been reported to elicit the UPR and mediate
apoptosis following ER stress (107). PCV2 triggers the UPR
in PK-15 cells by activating the PERK-eIF2α-ATF4-CHOP
pathway, without the concomitant activation of IRE1 or ATF6.
Over-expression of GRP78 can enhance viral capsid expression
and/or viral titers. Thus, PCV2 deploys the UPR to enhance its
replication (107). Replicase (Rep) and capsid (Cap) proteins of
PCV2 activate the eIF2α-ATF4-CHOP pathway. Cap expression
significantly reduced the expression of anti-apoptotic BCL2 and
increased caspase-3 cleavage by increasing the expression of
CHOP. Knockdown of PERK by RNA interference significantly
reduces Cap-induced CHOP expression and caspase-3 cleavage.
Cap induces UPR and apoptosis via the PERK-eIF2α-ATF4-
CHOP-BCL2 pathway (108). When PERK is inhibited by
GSK2606414 or eIF2α dephosphorylation is suppressed by
salubrinal, viral replication is limited, suggesting that CHOP is
involved in apoptosis induced by PCV2 and may be beneficial to
viral replication (107).

CHOP also plays an important role in RNA virus-infected
host cells. H1299 cells infected with Infectious Bronchitis Virus
(IBV) induced apoptosis via ER stress. Post-IBV infection,
the IRE1α-XBP1 pathway of the UPR was activated. IRE1α
protects infected cells from IBV-induced apoptosis, which
requires both its kinase and RNase activities. IRE1α antagonizes
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TABLE 1 | The functions of CHOP in ER stress-induced apoptosis in microbial models.

Microbial type Key proteins Involved

mechanisms and

phenotype

Functions of CHOP Research models References

Porcine circovirus type 2 CHOP, ATF4

Caspase 3,

PERK-eIF2α-ATF4

-CHOP-BCL2

Apoptosis and beneficial to

PCV2 replication

PK-15 cells (107, 108)

Infectious bronchitis virus CHOP,

TRIB3, BCL2

PERK-eIF2α-ATF4

PKR-eIF2α-ATF4

Apoptosis and facilitates

virus release

H1299 cells (109, 110)

Newcastle disease virus CHOP, ATF4,

cyclin D1

PERK-ATF4-CHOP Apoptosis and beneficial to

NDV replication

Asynchronously growing cells (111)

West Nile virus CHOP, PARP,

Caspase 3,

PERK-ATF4-CHOP Apoptosis and limit WNV

replication

Human neuroblastoma cells, (112)

Coxsackie virus B3 CHOP, BAX,

Caspase 3,

CHOP-BAX-

Caspase 3

Apoptosis and beneficial to

CVB3 replication

Mice (113)

Japanese encephalitis virus CHOP, p38,

BCL2

p38-CHOP-BCL2 Apoptosis BHK-21 cells (114, 115)

HIV CHOP, BCL2,

BAX

XBP-1-CHOP-

Caspase 3/9

Apoptosis Human brain endothelial cells (116, 117)

M. tuberculosis CHOP,

Caspase3/9

p-eIF2α-CHOP limits M. tuberculosis

replication

RAW 264.7 cells (26, 118)

Helicobacter pylori CHOP, BIM,

BAX, TRIB3

PERK-CHOP

PKR-eIF2α-ATF4

Damage the cell and tissue

(gastric injury)

AZ-521 cells (119, 120)

Escherichia coli CHOP, DR5,

TRAIL

CHOP-DR5-

Caspase 3/8

Damage the cell and tissue

(renal failure)

THP-1 cells (121, 122)

Shigella dysenteriae CHOP, DR5 p38-CHOP-DR5 Damage the cell and tissue

(neurological abnormalities)

RPE cells (123)

IBV-induced apoptosis bymodulating the phosphorylation of the
proapoptotic c-JunN-terminal kinase (JNK) and the pro-survival
RAC-alpha serine/threonine-protein kinase (Akt) (124). At the
same time, IBV infection also activates two other pathways,
including PERK-eIF2α-ATF4 and PKR-eIF2α-ATF4. Following
activation, ATF4, ATF3 and CHOP are upregulated. CHOP
affects GADD34 and the dephosphorylation of eIF2α. This leads
to the recovery of protein translation and increasing ER stress
and cell apoptosis. CHOP can up-regulate the expression of the
apoptotic precursor protein, pseudokinase tribbles homolog 3
(TRIB3), which inhibits the ERK pro-survival pathway, thereby
promoting apoptosis. During apoptosis induced by IBV, CHOP
also decreases the expression of BCL2, which contributes to
CHOP-mediated apoptosis. Thus, IBV induces apoptosis through
the IRE/JNK and PERK/PKR pathways. More importantly, in
CHOP-deficient cells, IBV-induced apoptosis is attenuated and
virus replication is inhibited. Thus, all such results suggest that
CHOP-induced apoptosis is beneficial to IBV replication (109,
110).

Coxsackie virus B3 (CVB3) can trigger the UPR and induce
apoptosis by mediating the production of CHOP (125, 126) and
reducing the cardiac Bcl-2/Bax ratio. That finding supports that
CHOP-mediated apoptosis plays a role in acute viral myocarditis
(AVMC), which occurs primarily through a mitochondria-
dependent pathway. However, the precise mechanism leading to
CHOP-mediated apoptosis remains unclear and requires further
investigation. Researches show that CHOP deficiency reduces
CVB3 replication, cardiac damage, and promotes survival in
CVB3-mediated acute viral myocarditis, in vivo (113, 125).

CHOP-mediated apoptosis in premature cells may function
as a host defense response by limiting virus replication and
pathogenesis. West Nile Virus (WNV) can induce CHOP
expression through the PERK-ATF4-CHOP pathway, and CHOP
induces the expression of the downstream target gene, GADD34.
eIF2α dephosphorylation also occurs, leading to the restoration
of protein translation, which increases ER stress and cell
apoptosis. Simultaneously, CHOP induces caspase-3 activation,
leading to apoptosis. In CHOP-deficient mouse embryonic
fibroblasts (MEFs),WNV grows to significantly higher viral titers
than that in wild-type MEFs, suggesting that CHOP-mediated
apoptosis functions to control WNV replication in vitro (112,
127).

The Functions of CHOP in Bacterial
Infection
ER stress-induced apoptosis plays an important role in bacteria-
infected host cells. The prevention of apoptosis provides a
survival advantage because it facilitates bacterial replication
inside host cells (128).

Mycobacterium tuberculosis (Mtb) infected host cells activate
three signaling pathways of ER stress (IRE1, PERK, and ATF6)
(129). Recent evidence suggests that Mtb and its 38 kDa
antigen can activate the PERK/eIF2α/CHOP pathway (25, 26).
Mycobacterium tuberculosis and its antigens have been shown
to be associated with IRE1α/TRAF2/ASK1/JNK/p38MAPK
activation and to result in apoptosis (130). Lim et al. reported
that CHOP production induced by the 38 kDa antigen
decreased when the JNK pathway was inhibited (25). In
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FIGURE 4 | The mechanism of CHOP regulation in ER stress induced apoptosis. Upstream regulatory pathway: Activated PERK phosphorylates eIF2α, which results

in the translation of ATF4. ATF4 translocates to the nucleus, which increases the expression of CHOP and ATF3. CHOP and ATF3 then bind to the promoters of the

target genes, upregulating their expression. ATF6 translocates to Golgi apparatus where it is activated by proteolysis. Activated ATF6 transcriptionally upregulates

CHOP expression. Additionally, ATF6 can regulate XBP-1 to activate CHOP. Activation of IRE1α processes unspliced XBP-1 mRNA into activated XBP1(s), which

enters the nucleus and controls the expression of CHOP. IRE1α activates the apoptotic signaling kinase 1 (ASK1), which in turn phosphorylates p38 MAPK/JNK, and

activates CHOP. In addition, Bag5 can reduce CHOP expression and increase Bcl-2 gene expression. Downstream regulatory pathway: CHOP triggers the intrinsic

apoptotic pathway through the inhibition of BCL-2, BCL-XL, MCL-1, and the upregulation of BIM, which regulates BAX-BAK-mediated mitochondrial outer membrane

permeabilization. This leads to cytochrome c release and the caspase cascade. CHOP can also regulate apoptosis by upregulating the expression of the TRB3 gene

and preventing Akt phosphorylation, which inhibits the activity of caspases-3/9. CHOP triggers the extrinsic apoptotic pathway through the upregulation of DR4 and

DR5, which regulate the caspase-8-mediated cascade. This leads to Bid cleavage into tBid, which regulates the BAX-BAK-mediated mitochondrial apoptosis

pathways. CHOP can also trigger the ERO1α-IP3R-Ca2+-CaMKII pathway. ROS can also trigger Ca2+-dependent mitochondrial apoptosis. CHOP can directly

activate GADD34 (DNA damage protein), which, combined with phosphatase 1 protein (PP1), dephosphorylates eIF2α, and results in protein translation recovery,

increased ER stress, and cell apoptosis.

A549 cells, JNK phosphorylated Bcl-2 to inhibit its anti-
apoptotic activity, and also phosphorylated Bax. Phosphorylated
Bax then translocated to the mitochondria and activated
Bak to promote apoptosis (130). Thus, CHOP can cooperate
with IRE1α/TRAF2/ASK1/JNK to regulate the occurrence of
apoptosis.

During M. tuberculosis infection, excessive expression of
CHOP can promote cell apoptosis by at least two ways: (i)
activation of ERO1α. The 38 kDa antigen induces the production
of ROS and the subsequent ERS via ERO1α, which leads to
apoptosis through high concentrations of peroxide in the ER
environment (25). (ii) Inhibition of Bcl-2. Researchers have
reported that ESAT-6 induces CHOP to form dimers with
CREB, leading to decreased Bcl-2 expression and increased
Bax expression (130, 131). More importantly, when CHOP is
interfered with siRNA, it can significantly increase the survival
ofM. tuberculosis in host cells (26). Collectively, CHOP-induced
apoptosis is beneficial to combatMtb infection.

Vacuolating cytotoxin (VacA) is a critical virulence factor
of Helicobacter pylori. VacA can upregulate the expression of
CHOP after gastric epithelial cells are stimulated with cytotoxin
A, and can also upregulate the expression of BIM and activate
BAX, and TRIB3, leading to apoptosis. CHOP is transcriptionally
activated by PERK via the phosphorylation of eIF2-α, which
is also augmented by NH4Cl. Knockdown of CHOP or TRIB3
could also decrease VacA-induced mitochondrial dysfunction
and apoptosis. CHOP is not only involved in apoptosis, but
also in autophagy induced by VacA. Knockdown of the ER
stress effectors, CHOP or TRIB3, could drastically decrease
the formation of autolysosomes and cell death in VacA-treated
gastric cancer cells. Therefore, VacA induces autophagy and cell
death in the AGS cells by triggering ER stress, which involves the
upregulation of CHOP and TRIB3 (119, 120).

Type I Shiga toxin produced by Escherichia coli can also
cause apoptosis through endogenous and exogenous pathways,
in which CHOP and DR5 play important roles. Silencing the
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expression of CHOP selectively blocks the activation of caspase
and attenuates cell apoptosis (121, 132). Shiga toxins produced
by Shigella dysenteriae serotype I activate both apoptotic cell
death signaling and the ER stress response. Treatment of human
retinal pigment epithelial cells (RPE cells) with Stxs results in the
activation of JNK and p38MAPK, and up-regulation of CHOP
and DR5 expression (123, 132). Collectively, characterization
of CHOP functions during microbial infection will help us to
understand the pathogenesis of microorganisms and provide a
better theoretical basis to control and prevent diseases.

CHOP plays important functions during microbial infections,
and therefore, may be an important potential target for
new therapeutic approaches. Research has shown that the
regulation of CHOP expression plays an important role in
metabolic diseases and in some cancers (83, 133). CHOP
deficiencies attenuate oxidative stress and renal ischemia-
reperfusion-induced acute renal injury, in vitro and in vivo
(83). The regulation of CHOP expression has been accepted as
an approach to remove cancer cells through the induction of
apoptosis (134). As mentioned above, small molecule inhibitors
that inhibit ER stress (UPR) and the expression of CHOP may
act as therapeutic options to prevent ER stress and microbial
infections. Using the small molecule inhibitors, GSK2606414
or salubrinal, to inhibit the PERK-eIF2α pathway and the
expression of CHOP can limit PCV2 replication (107). Thus,
targeting CHOP may be a good therapeutic approach for
the treatment of PCV2 infection. The chemical chaperone
TUDCA is a classic ER stress inhibitor that improves ER
folding capacity, which has been protective in various diseases,
including diabetes mellitus, hypertension, calcification, and
even cardiac dysfunction by preventing ER stress (135–137).
TUDCA administration markedly suppresses cardiac ER stress
and CHOP induction; thus, preventing cardiomyocyte apoptosis,
cardiac inflammation and injury, cardiac dysfunction, reducing
CVB3 replication in vivo, and increasing survival rates in
CVB3 inoculation-induced AVMC models (113). Therefore,
small molecule inhibitors that prevent ER stress and CHOP
expression are potential therapeutic approaches for CVB3
infections. Additionally, in CHOP-deficient cells, the apoptosis
caused by IBV was attenuated and IBV replication was limited
and CVB3 replication was also limited (110, 113). Thus,
overexpression or knock-out of the CHOP gene may be
a therapeutic approach to treat related diseases. Therefore,
understanding how CHOP functions during microbial infections
will provide better therapeutic approaches to control and prevent
diseases.

CONCLUSIONS AND FUTURE
PERSPECTIVES

ER stress induced by pathogenic microorganism infection and
subsequent apoptosis play pivotal roles in the regulation of
infection (106, 138). CHOP is an important molecule in the
ER stress-induced apoptosis pathway. CHOP-induced apoptosis
also plays a pivotal role during virus or bacterium infection.
Therefore, it is necessity to illustrate CHOP induced apoptosis
pathway clearly. As mentioned above, there are extensive in-
depth studies on the upstream regulatory genes of CHOP and its
downstream target genes in the context of ER stress (a diagram
summarizing the regulation of CHOP is shown in Figure 4).

Increasing evidence has suggested that infections are relevant
to the abnormal expression of CHOP during ER stress and
most of the time, the expression of CHOP can induce
apoptosis. However, the mechanisms and pathways triggered
by different pathogens vary and current researches indicate
that CHOP plays an important role in apoptosis induced by
pathogenic microorganisms. Some of those roles are beneficial
to the microorganisms, while others are detrimental to the
microorganisms. Most researches aim to show the apoptosis
pathways induced by CHOP, and the functions of apoptosis
to microorganisms. However, it is unknown under which
conditions apoptosis induced by CHOP is beneficial to the
release and spread of pathogenic microorganisms, or if such
processes trigger a more intense immune response. Thus,
how microorganisms use CHOP-induced apoptosis to regulate
growth and reproduction, or how the host cells use CHOP-
induced apoptosis to restrict a microorganism’s replication and
transmission are important aspects that need to be investigated
further. The intricate balance between the two effects is worth
further study, and the detailing of such mechanisms may help in
the development of therapeutic approaches for the ER stress and
microbial infection.
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