22 research outputs found

    Bubble Size and Mass Transfer in a Modified Airlift Loop Reactor with Continuous Slurry Phase

    Get PDF
    A modified internal airlift loop reactor with continuous slurry phases was explored to investigate the local bubble size and the local mass transfer properties. A mathematical model was derived to simulate the bubble size in every flow region. Also, a new method was developed to measure the dissolved oxygen concentration

    Between Big City and Authentic Village: Branding the Small Chinese City

    Get PDF
    While recent academic research has already produced an impressive corpus on big cities such as Shanghai and Beijing, the small Chinese city has been mostly ignored. In this article, I suggest that consideration of the small city can bring a new perspective on the wider urban fabric of which it is an element. Although small city governments have embraced urban entrepreneurialism with the same enthusiasm as China’s big cities, different configurations of space, branding and the everyday have nevertheless resulted. My case study of Kaili in Guizhou province indicates that the small city exists in a complex relationship with the big city and the village; it is pulled towards large-scale urbanization while simultaneously attempting to construct a unique city image based upon the evocation of rural cultural practices. The perspective from the small city thus suggests the need to consider the rural-urban divide – long a dominant geographical imagination of China – alongside other geographies, including a triad of the small city, the village and the big city

    Genetic Variation of HvCBF Genes and Their Association with Salinity Tolerance in Tibetan Annual Wild Barley

    Get PDF
    The evaluation of both the genetic variation and the identification of salinity tolerant accessions of Tibetan annual wild barley (hereafter referred to as Tibetan barley) (Hordeum vulgare L. ssp. Spontaneum and H. vulgare L. ssp. agriocrithum) are essential for discovering and exploiting novel alleles involved in salinity tolerance. In this study, we examined tissue dry biomass and the Na+ and K+ contents of 188 Tibetan barley accessions in response to salt stress. We investigated the genetic variation of transcription factors HvCBF1, HvCBF3 and HvCBF4 within these accessions, conducting association analysis between these three genes and the respective genotypic salt tolerance. Salt stress significantly reduced shoot and root dry weight by 27.6% to 73.1% in the Tibetan barley lines. HvCBF1, HvCBF3 and HvCBF4 showed diverse sequence variation in amplicon as evident by the identification of single nucleotide polymorphisms (SNPs) and 3, 8 and 13 haplotypes, respectively. Furthermore, the decay of Linkage disequilibrium (LD) of chromosome 5 was 8.9 cM (r2<0.1). Marker bpb-4891 and haplotype 13 (Ps 610) of the HvCBF4 gene were significantly (P<0.05) and highly significantly (P<0.001) associated with salt tolerance. However, HvCBF1 and HvCBF3 genes were not associated with salinity tolerance. The accessions from haplotype 13 of the HvCBF4 gene showed high salinity tolerance, maintaining significantly lower Na+/K+ ratios and higher dry weight. It is thus proposed that these Tibetan barley accessions could be of value for enhancing salinity tolerance in cultivated barley

    Hash-Chain-Based Cross-Regional Safety Authentication for Space-Air-Ground Integrated VANETs

    No full text
    With the increasing demand for intelligent traffic management and road network intelligent information services, the vehicular ad hoc networks (VANETs) combined with information of air, space and ground have outstanding advantages in coverage, reliable transmission, and resource richness. Due to the characteristics of heterogeneous, numerous nodes, and frequent cross-network flow, the space&ndash;air&ndash;ground integrated network (SAGIN) puts forward higher requirements for security. This paper proposes a cross-regional node identity management architecture based on the hash chain, combined with radio frequency (RF) fingerprint theory, to guarantee node identity security with a non-duplicated physical information identity authentication mechanism. At the same time, the blockchain consensus mechanism is simplified to achieve block recording and verification. OMNet ++, SUMO, and Veins co-simulation platforms are used to generate transactions for cross-regional traffic flow. Based on the Hyperledger&ndash;Fabric architecture, Kafka and PBFT consensus algorithms are simulated. The simulation results show that the average delay of a single transaction generated block is about 0.9 ms, which achieves efficient and low-latency authentication

    A three dimensional transport model for oil spills in coastal waters based on particle approach

    No full text
    a three dimensional transport model based on particle approach is developed and applied for simulating oil spills at Bohai Sea, China. In such a model, the movement of the particles as the sum of deterministic advection and random diffusion are determined by exploiting the equivalency between the Ito-Fokker-Planck equation and concentration equation. Numerical experiments are further used to demonstrate the simulations of oil spills and to visualize the trajectory of oil pollution in the coastal waters driven by the force of tidal currents of Bohai Sea, China. &copy;2010 IEEE

    Research on the Open-Categorical Classification of the Internet-of-Things Based on Generative Adversarial Networks

    No full text
    Nowadays, it is more and more important to deal with the potential security issues of internet-of-things (IoT). Indeed, using the physical layer features of IoT wireless signals to achieve individual identity authentication is an effective way to enhance the security of IoT. However, traditional classifiers need to know all the categories in advance to get the recognition models. Realistically, it is difficult to collect all types of samples, which will result in some mistakes that the unknown target class may be decided as a known one. Consequently, this paper constructs an improving open-categorical classification model based on the generative adversarial networks (OCC-GAN) to solve the above problems. Here, we have modified the loss function of the generative model G and the discriminative model D. Compared to the traditional GAN model which can generate the fake sample overlapping with the real samples, our proposed G model generates the fake samples as negative samples which are evenly surrounding with the real samples, while the D model learns to distinguish between real samples and fake samples. Besides, we add auxiliary training not only to gain a better recognition result but also to improve the efficiency of the model. Furthermore, Our proposed model is verified through experimental study. Compared to other common methods, such as one-class support vector machine (OC-SVM) and one-versus-rest support vector machine (OvR-SVM), the OCC-GAN model has a better performance. The recognition rate of the OCC-GAN model can reach more than 90% with a recall rate of 97% by the data of the IoT module

    Influence of ketamine on amino acid neurotransmitters secretion by nerve cells <i>in vitro</i>

    No full text
    In order to study the influence of amino acid neurotransmitters secreted by the nerve cells after ketamine treatment, the nerve cells were cultured in vitro to exclude the interference of other factors in vivo and treated with three different doses of ketamine (1, 3 and 5 µg/mL). Then, the concentration of neuronal amino acid neurotransmitters was examined at 0, 15, 30, 45, 60, 90, 120 min after treatment. The trends of each amino acid concentration after ketamine treatment were nearly the same among the different treatment doses. After 15 min of adapting time, ketamine decreased the excitatory amino acid glutamic acid and aspartic acid concentration, and increased the concentration of the inhibitory amino acid glycine. Their concentrations showed a tendency to return approximately to the original level after 120 min.

    Influence of ketamine on amino acid neurotransmitters secretion by nerve cells in vitro

    No full text
    In order to study the influence of amino acid neurotransmitters secreted by the nerve cells after ketamine treatment, the nerve cells were cultured in vitro to exclude the interference of other factors in vivo and treated with three different doses of ketamine (1, 3 and 5 µg/mL). Then, the concentration of neuronal amino acid neurotransmitters was examined at 0, 15, 30, 45, 60, 90, 120 min after treatment. The trends of each amino acid concentration after ketamine treatment were nearly the same among the different treatment doses. After 15 min of adapting time, ketamine decreased the excitatory amino acid glutamic acid and aspartic acid concentration, and increased the concentration of the inhibitory amino acid glycine. Their concentrations showed a tendency to return approximately to the original level after 120 min

    Investigations on the Effects of Seasonal Temperature Changes on the Electrical Resistance of Living Trees

    No full text
    In order to use the electrical resistance method to accurately and timely detect and evaluate the internal decay defects of living trees, the effects of the seasonal temperature and moisture content on the electrical resistance of standing trees were investigated. At the Northeast Forestry University Experimental Forest Farm, Harbin, Heilongjiang Province of China, Populus simonii Populus simonii Carr. and Larix gmelinii (Rupr.) Rupr. were selected as the objects and the electrical resistance of standing trees was tested through different seasons from December 2016 to December 2017. Meanwhile, the effects of changes in the seasonal temperatures (&minus;20 to &minus;10 &deg;C, &minus;10 to &minus;5 &deg;C, &minus;5 to 0 &deg;C, 0 to 5 &deg;C, 5 to 10 &deg;C, 10 to 15 &deg;C, 15 to 25 &deg;C) as well as changes in the moisture content (MC) (Populus simonii, MC &ge; 103%; Larix gmelinii, MC &ge; 77.5%) on the electrical resistance in the cross-sections of living trees were studied. The influence of temperature at different moisture contents, the moisture content at different temperatures, and their combined effects on electrical resistance were analyzed, following which a regression model was also established. The obtained results indicated that ambient temperature had a significant effect on the average value of electrical resistance in the cross-section of living trees when temperatures were below the freezing point. There was a sudden discontinuity near the freezing point, and logR (logarithm value of electrical resistance) in the cross-sections of sound trees and decayed trees changed in a similar trend with variations in the temperature. While the effect of moisture content on logR in the cross-sections of threes was insignificant at different temperatures because of the moisture content above FSP (fiber saturation point). It indicated that the temperature and moisture content had interactive effects on logR in the cross-sections. The binary linear regression model between moisture content, temperature, and logR was highly fitted with a correlation coefficient (R2) higher than 0.8. The outcome of this investigation indicates that when non-destructive testing is performed on living trees using electrical resistance at different seasonal temperatures, the measured results need to consider both the temperature and moisture content. For practical work, it is not recommended to consider testing living trees near the freezing point temperature using the electrical resistive tomography. Below the freezing point, the electrical resistance changes with temperature greatly relative to the normal temperature. Therefore, when performing the detection of electrical resistance, it is necessary to calibrate the effects of temperatur
    corecore