637 research outputs found

    Spatial Determination of Magnetic Avalanche Ignition Points

    Full text link
    Using time-resolved measurements of local magnetization in the molecular magnet Mn12-ac, we report studies of the propagation of magnetic avalanches (fast magnetization reversals) that originate from points inside the crystals rather than at the edges. The curved nature of the fronts produced by avalanches is reflected in the time-of-arrival at micro-Hall sensors placed at the surface of the sample. Assuming that the avalanche interface is a spherical bubble that grows with a radius proportional to time, we are able to locate the approximate ignition point of each avalanche in a two-dimensional cross-section of the crystal. For the samples used in these studies, avalanches in a given crystal are found to originate in a small region with a radius of roughly 150 microns.Comment: 3 pages, 4 figure

    Tuning Magnetic Avalanches in Mn12-ac

    Full text link
    Using micron-sized Hall sensor arrays to obtain time-resolved measurements of the local magnetization, we report a systematic study in the molecular magnet Mn12_{12}-acetate of magnetic avalanches controllably triggered in different fixed external magnetic fields and for different values of the initial magnetization. The speeds of propagation of the spin-reversal fronts are in good overall agreement with the theory of magnetic deflagration of Garanin and Chudnovsky \cite{Garanin}.Comment: 8 pages, 7 figures; discussion expanded and revise

    Magnetic bioreactor for magneto-, mechano- and electroactive tissue engineering strategies

    Get PDF
    Biomimetic bioreactor systems are increasingly being developed for tissue engineering applications, due to their ability to recreate the native cell/tissue microenvironment. Regarding bone-related diseases and considering the piezoelectric nature of bone, piezoelectric scaffolds electromechanically stimulated by a bioreactor, providing the stimuli to the cells, allows a biomimetic approach and thus, mimicking the required microenvironment for effective growth and differentiation of bone cells. In this work, a bioreactor has been designed and built allowing to magnetically stimulate magnetoelectric scaffolds and therefore provide mechanical and electrical stimuli to the cells through magnetomechanical or magnetoelectrical effects, depending on the piezoelectric nature of the scaffold. While mechanical bioreactors need direct application of the stimuli on the scaffolds, the herein proposed magnetic bioreactors allow for a remote stimulation without direct contact with the material. Thus, the stimuli application (23 mT at a frequency of 0.3 Hz) to cells seeded on the magnetoelectric, leads to an increase in cell viability of almost 30% with respect to cell culture under static conditions. This could be valuable to mimic what occurs in the human body and for application in immobilized patients. Thus, special emphasis has been placed on the control, design and modeling parameters governing the bioreactor as well as its functional mechanism.FCT—Fundação para a Ciência e Tecnologia: UID/FIS/04650/2020; PTDC/BTM-MAT/28237/2017; PTDC/EMD-EMD/28159/2017 and SFRH/BPD/121464/2016. Spanish Ministry of Economy and Competitiveness (MINECO): MAT2016–76039-C4–3-R (AEI/FEDER, UE). Basque Government Industry and Education Department: ELKARTEK, PIB and PIBA (PIBA−2018–06) programs, respectively.info:eu-repo/semantics/publishedVersio

    Field induced magnetic transition and metastability in Co substituted Mn2SbMn_{2}Sb

    Get PDF
    A detailed investigation of first order ferrimagnetic (FRI) to antiferromagnetic (AFM) transition in Co (15%) doped Mn2SbMn_2Sb is carried out. These measurements demonstrate anomalous thermomagnetic irreversibility and glass-like frozen FRI phase at low temperatures. The irreversibility arising between the supercooling and superheating spinodals is distinguised in an ingenious way from the irreversibility arising due to kinetic arrest. Field annealing measurements shows reentrant FRI-AFM-FRI transition with increasing temperature. These measurements also show that kinetic arrest band and supercooling band are anitcorrelated i.e regions which are kinetically arrested at higher temperature have lower supercooling temperature and vice versa.Comment: 10 pages, 8 figure

    Cerebrospinal fluid neurogranin in an inducible mouse model of neurodegeneration: A translatable marker of synaptic degeneration

    Get PDF
    Synapse impairment is thought to be an early event in Alzheimer's disease (AD); dysfunction and loss of synapses are linked to cognitive symptoms that precede neuronal loss and neurodegeneration. Neurogranin (Ng) is a somatodendritic protein that has been shown to be reduced in brain tissue but increased in the cerebrospinal fluid (CSF) of AD patients compared to age-matched controls. High levels of CSF Ng have been shown to reflect a more rapid AD progression. To gauge the translational value of Ng as a biomarker, we developed a new, highly sensitive, digital enzyme-linked immunosorbent assay (ELISA) on the Simoa platform to measure Ng in both mouse and human CSF. We investigated and confirmed that Ng levels are increased in the CSF of patients with AD compared to controls. In addition, we explored how Ng is altered in the brain and CSF of transgenic mice that display progressive neuronal loss and synaptic degeneration following the induction of p25 overexpression. In this model, we found that Ng levels increased in CSF when neurodegeneration was induced, peaking after 2 weeks, while they decreased in brain. Our data suggest that CSF Ng is a biomarker of synaptic degeneration with translational value

    Deep Learning and Statistical Models for Time-Critical Pedestrian Behaviour Prediction

    Full text link
    The time it takes for a classifier to make an accurate prediction can be crucial in many behaviour recognition problems. For example, an autonomous vehicle should detect hazardous pedestrian behaviour early enough for it to take appropriate measures. In this context, we compare the switching linear dynamical system (SLDS) and a three-layered bi-directional long short-term memory (LSTM) neural network, which are applied to infer pedestrian behaviour from motion tracks. We show that, though the neural network model achieves an accuracy of 80%, it requires long sequences to achieve this (100 samples or more). The SLDS, has a lower accuracy of 74%, but it achieves this result with short sequences (10 samples). To our knowledge, such a comparison on sequence length has not been considered in the literature before. The results provide a key intuition of the suitability of the models in time-critical problems

    A pilot study to evaluate the application of a generic protein standard panel for quality control of biomarker detection technologies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein biomarker studies are currently hampered by a lack of measurement standards to demonstrate quality, reliability and comparability across multiple assay platforms. This is especially pertinent for immunoassays where multiple formats for detecting target analytes are commonly used.</p> <p>Findings</p> <p>In this pilot study a generic panel of six non-human protein standards (50 - 10^7 pg/mL) of varying abundance was prepared as a quality control (QC) material. Simulated "normal" and "diseased" panels of proteins were prepared in pooled human plasma and incorporated into immunoassays using the Meso Scale Discovery<sup>® </sup>(MSD<sup>®</sup>) platform to illustrate reliable detection of the component proteins. The protein panel was also evaluated as a spike-in material for a model immunoassay involving detection of ovarian cancer biomarkers within individual human plasma samples. Our selected platform could discriminate between two panels of the proteins exhibiting small differences in abundance. Across distinct experiments, all component proteins exhibited reproducible signal outputs in pooled human plasma. When individual donor samples were used, half the proteins produced signals independent of matrix effects. These proteins may serve as a generic indicator of platform reliability.</p> <p>Each of the remaining proteins exhibit differential signals across the distinct samples, indicative of sample matrix effects, with the three proteins following the same trend. This subset of proteins may be useful for characterising the degree of matrix effects associated with the sample which may impact on the reliability of quantifying target diagnostic biomarkers.</p> <p>Conclusions</p> <p>We have demonstrated the potential utility of this panel of standards to act as a generic QC tool for evaluating the reproducibility of the platform for protein biomarker detection independent of serum matrix effects.</p
    corecore