18 research outputs found

    TLR3 Regulated Poly I:C-Induced Neutrophil Extracellular Traps and Acute Lung Injury Partly Through p38 MAP Kinase

    Get PDF
    Acute lung injury (ALI) is the leading cause of morbidity and mortality in critically ill patients. Neutrophil extracellular traps (NETs) have been well documented in the ALI model of bacterial infection. In the present study, we demonstrated that poly I:C could induce pulmonary NETs. Upon poly I:C intratracheal inoculation, neutrophil infiltration in the bronchoalveolar lavage fluid (BALF) was significantly increased. Furthermore, the inflammatory cytokines IL-1β, IL-6, and TNF-α in the lung were also significantly elevated. Neutrophil depletion abolished NETs and decreased both neutrophil infiltration and IL-1β in the lung. As expected, DNase I, an inhibitor of MPO and NADPH, decreased pulmonary inflammation and NETs. Blocking of the poly I:C receptor TLR3 reduced lung inflammation and NETs. The MAPK kinase inhibitor p38 diminished the formation of NETs and restored the expression of the tight junction protein claudin-5 in the mouse lung when challenged with poly I:C. In summary, poly I:C induced the formation of pulmonary NETs and ALI, which may be associated with the activation of p38 MAPK and the decreased expression of claudin-5

    Mechanics and thermodynamics of a new minimal model of the atmosphere

    Get PDF
    The understanding of the fundamental properties of the climate system has long benefitted from the use of simple numerical models able to parsimoniously represent the essential ingredients of its processes. Here, we introduce a new model for the atmosphere that is constructed by supplementing the now-classic Lorenz ’96 one-dimensional lattice model with temperature-like variables. The model features an energy cycle that allows for energy to be converted between the kinetic form and the potential form and for introducing a notion of efficiency. The model’s evolution is controlled by two contributions—a quasi-symplectic and a gradient one, which resemble (yet not conforming to) a metriplectic structure. After investigating the linear stability of the symmetric fixed point, we perform a systematic parametric investigation that allows us to define regions in the parameters space where at steady-state stationary, quasi-periodic, and chaotic motions are realised, and study how the terms responsible for defining the energy budget of the system depend on the external forcing injecting energy in the kinetic and in the potential energy reservoirs. Finally, we find preliminary evidence that the model features extensive chaos. We also introduce a more complex version of the model that is able to accommodate for multiscale dynamics and that features an energy cycle that more closely mimics the one of the Earth’s atmosphere

    A heterozygous moth genome provides insights into herbivory and detoxification

    Get PDF
    How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants1, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood2. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.Minsheng You … Simon W Baxter … et al

    NUMERICAL SIMULATION OF ULTRASONIC DETECTION FOR CONCRETE STRUCTURE BASED ON EQUIVALENT OFFSET MIGRATION

    No full text
    Ultrasonic wave testing is a classic Non-destructive testing (NDT) method to detect, locate and monitor the crack/fracture in construction materials. However, it is still hard to examine those small abnormal bodies since effective reflected signal from abnormity is usually rather weak. In this paper, a new ultrasound imaging technique, equivalent offset migration (EOM), is studied to demonstrate the feasibility and applicability for detecting concrete cracks. Thus, a complex numerical model along with six small scale flaws was built, and then the ultrasonic wave propagation in concrete was modeled by high order finite difference approximation method. Numerical simulation indicates that 1) there exists a strong scattering phenomenon while ultrasound propagates in concrete with multiple small scatter flaws, and 2) EOM is capable of imaging small flaws in concrete with high resolution and accuracy

    NUMERICAL SIMULATION OF ULTRASONIC DETECTION FOR CONCRETE STRUCTURE BASED ON EQUIVALENT OFFSET MIGRATION

    No full text
    Ultrasonic wave testing is a classic Non-destructive testing (NDT) method to detect, locate and monitor the crack/fracture in construction materials. However, it is still hard to examine those small abnormal bodies since effective reflected signal from abnormity is usually rather weak. In this paper, a new ultrasound imaging technique, equivalent offset migration (EOM), is studied to demonstrate the feasibility and applicability for detecting concrete cracks. Thus, a complex numerical model along with six small scale flaws was built, and then the ultrasonic wave propagation in concrete was modeled by high order finite difference approximation method. Numerical simulation indicates that 1) there exists a strong scattering phenomenon while ultrasound propagates in concrete with multiple small scatter flaws, and 2) EOM is capable of imaging small flaws in concrete with high resolution and accuracy

    Simulation of DNA replication based on discrete event

    No full text
    Conference Name:2012 2nd IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2012. Conference Address: Langkawi, Malaysia. Time:December 17, 2012 - December 19, 2012.University Malaya; CBMTI University Malaya; Tourism Malaysia; Kumpulan ABEX Sdn Bhd; AMAN kampusIn this paper, we present a discrete event method to implement the simulation of DNA replication process. This method focuses on analyzing features about DNA replication, finding the transition among these statuses of origins, and then using these transitions to create events, at last, we construct event model based on these events and present a method to realize the simulation. The result we get from simulation is numbered in minutes represent the time to complete the process of DNA replication. This method function well in data processing stability and result authenticity. 漏 2012 IEEE

    Laser-Induced Breakdown Spectroscopy for Rapid Discrimination of Heavy-Metal-Contaminated Seafood Tegillarca granosa

    No full text
    Tegillarca granosa samples contaminated artificially by three kinds of toxic heavy metals including zinc (Zn), cadmium (Cd), and lead (Pb) were attempted to be distinguished using laser-induced breakdown spectroscopy (LIBS) technology and pattern recognition methods in this study. The measured spectra were firstly processed by a wavelet transform algorithm (WTA), then the generated characteristic information was subsequently expressed by an information gain algorithm (IGA). As a result, 30 variables obtained were used as input variables for three classifiers: partial least square discriminant analysis (PLS-DA), support vector machine (SVM), and random forest (RF), among which the RF model exhibited the best performance, with 93.3% discrimination accuracy among those classifiers. Besides, the extracted characteristic information was used to reconstruct the original spectra by inverse WTA, and the corresponding attribution of the reconstructed spectra was then discussed. This work indicates that the healthy shellfish samples of Tegillarca granosa could be distinguished from the toxic heavy-metal-contaminated ones by pattern recognition analysis combined with LIBS technology, which only requires minimal pretreatments
    corecore