54 research outputs found

    Prospects of gravitational waves in the minimal left-right symmetric model

    Full text link
    The left-right symmetric model (LRSM) is a well-motivated framework to restore parity and implement seesaw mechanisms for the tiny neutrino masses at or above the TeV-scale, and has a very rich phenomenology at both the high-energy and high-precision frontiers. In this paper we examine the phase transition and resultant gravitational waves (GWs) in the minimal version of LRSM. Taking into account all the theoretical and experimental constraints on LRSM, we identify the parameter regions with strong first-order phase transition and detectable GWs in the future experiments. It turns out in a sizeable region of the parameter space, GWs can be generated in the phase transition with the strength of 101710^{-17} to 101210^{-12} at the frequency of 0.1 to 10 Hz, which can be detected by BBO and DECIGO. Furthermore, GWs in the LRSM favor a relatively light SU(2)RSU(2)_R-breaking scalar H30H_3^0, which is largely complementary to the direct searches of a long-lived neutral scalar at the high-energy colliders. It is found that the other heavy scalars and the right-handed neutrinos in the LRSM also play an important part for GW signal production in the phase transition.Comment: 41 pages, 10 figures, 5 tables, added references, improved tex

    Gravitational waves from axion wave production

    Full text link
    We consider a scenario with axions/axion-like particles Chern-Simons gravity coupling, such that gravitational waves can be produced directly from axion wave tachyonic instability in the early universe after inflation. This axion gravity term is less constrained compared to the well-searched axion photon coupling and can provide a direct and efficient production channel for gravitational waves. Such stochastic gravitational waves can be detected by either space/ground-based gravitational wave detectors or pulsar timing arrays for a broad range of axion masses and decay constants.Comment: 13 pages, 4 figure

    Improving heavy Dirac neutrino prospects at future hadron colliders using machine learning

    Full text link
    In this work, by using the machine learning methods, we study the sensitivities of heavy pseudo-Dirac neutrino NN in the inverse seesaw at the high-energy hadron colliders. The production process for the signal is ppN3+ETmisspp \to \ell N \to 3 \ell + E_T^{\rm miss}, while the dominant background is ppWZ3+ETmissp p \to W Z \to 3 \ell + E_T^{\rm miss}. We use either the Multi-Layer Perceptron or the Boosted Decision Tree with Gradient Boosting to analyse the kinematic observables and optimize the discrimination of background and signal events. It is found that the reconstructed ZZ boson mass and heavy neutrino mass from the charged leptons and missing transverse energy play crucial roles in separating the signal from backgrounds. The prospects of heavy-light neutrino mixing VN2|V_{\ell N}|^2 (with =e,μ\ell = e,\,\mu) are estimated by using machine learning at the hadron colliders with s=14\sqrt{s}=14 TeV, 27 TeV, and 100 TeV, and it is found that VN2|V_{\ell N}|^2 can be improved up to O(106){\cal O} (10^{-6}) for heavy neutrino mass mN=100m_N = 100 GeV and O(104){\cal O} (10^{-4}) for mN=1m_N = 1 TeV.Comment: 33 pages, 14 figures, 4 tables, more details and more references added, version published in JHE

    Activation of Interleukin-1β Release by the Classical Swine Fever Virus Is Dependent on the NLRP3 Inflammasome, Which Affects Virus Growth in Monocytes

    Get PDF
    Classical swine fever virus (CSFV) is a classic Flavivirus that causes the acute, febrile, and highly contagious disease known as classical swine fever (CSF). Inflammasomes are molecular platforms that trigger the maturation of proinflammatory cytokines to engage innate immune defenses that are induced upon cellular infection or stress. However, the relationship between the inflammasome and CSFV infection has not been thoroughly characterized. To understand the function of the inflammasome response to CSFV infection, we infected porcine peripheral blood monocytes (PBMCs) with CSFV. Our results indicated that CSFV infection induced both the generation of pro-interleukin-1β (pro-IL-1β) and its processing in monocytes, leading to the maturation and secretion of IL-1β through the activation of caspase 1. Moreover, CSFV infection in PBMCs induced the production and cleavage of gasdermin D (GSDMD), which is an inducer of pyroptosis. Additional studies showed that CSFV-induced IL-1β secretion was mediated by NLRP3 and that CSFV infection could sufficiently activate the assembly of the NLRP3 inflammasome in monocytes. These results revealed that CSFV infection inhibited the expression of NLRP3, and knockdown of NLRP3 enhanced the replication of CSFV. In conclusion, these findings demonstrate that the NLRP3 inflammasome plays an important role in the innate immune response to CSFV infection

    Attenuated Salmonella choleraesuis-mediated RNAi targeted to conserved regions against foot-and-mouth disease virus in guinea pigs and swine

    Get PDF
    In this study, specific sequences within three genes (3D, VP4 and 2B) of the foot-and-mouth disease virus (FMDV) genome were determined to be effective RNAi targets. These sequences are highly conserved among different serotype viruses based on sequence analysis. Small interfering RNA (siRNA)-expressing plasmids (p3D-NT19, p3D-NT56, pVP4-NT19, pVP4-NT65 and p2B-NT25) were constructed to express siRNA targeting 3D, VP4 and 2B, respectively. The antiviral potential of these siRNA for various FMDV isolates was investigated in baby hamster kidney (BHK-21) cells and suckling mice. The results show that these siRNA inhibited virus yield 10- to 300-fold for different FMDV isolates of serotype O and serotype Asia I at 48 h post infection in BHK-21 cells compared to control cells. In suckling mice, p3D-NT56 and p2B-NT25 delayed the death of mice. Twenty percent to 40% of the animals that received a single siRNA dose survived 5 days post infection with serotype O or serotype Asia I. We used an attenuated Salmonella choleraesuis (C500) vaccine strain, to carry the plasmid that expresses siRNA directed against the polymerase gene 3D (p3D-NT56) of FMDV. We used guinea pigs to evaluate the inhibitory effects of recombinant S. cho (p3D-NT56/S. cho) on FMDV infection. The results show that 80% of guinea pigs inoculated with 109 CFU of p3D-NT56/S. cho and challenged 36 h later with 50 ID50 of homologous FMDV were protected. We also measured the antiviral activity of p3D-NT56/S. cho in swine. The results indicate that 100% of the animals treated with 5 × 109 CFU of p3D-NT56/S. cho were protected in 9 days

    Metabolic Profiles in Cell Lines Infected with Classical Swine Fever Virus

    No full text
    Viruses require energy and biosynthetic precursors from host cells for replication. An understanding of the metabolic interplay between classical swine fever virus (CSFV) and host cells is important for exploring the complex pathological mechanisms of classical swine fever (CSF). In the current study, and for the first time, we utilized an approach involving gas chromatography coupled with mass spectrometry (GC-MS) to examine the metabolic profiles within PK-15 and 3D4/2 cells infected with CSFV. The differential metabolites of PK-15 cells caused by CSFV infection mainly included the decreased levels of glucose 6-phosphate [fold change (FC) = −1.94)] and glyceraldehyde-3-phosphate (FC = −1.83) during glycolysis, ribulose 5-phosphate (FC = −1.51) in the pentose phosphate pathway, guanosine (FC = −1.24) and inosine (FC = −1.16) during purine biosynthesis, but the increased levels of 2-ketoisovaleric acid (FC = 0.63) during the citrate cycle, and ornithine (FC = 0.56) and proline (FC = 0.62) during arginine and proline metabolism. However, metabolite changes caused by CSFV infection in 3D4/2 cells included the reduced glyceraldehyde-3-phosphate (FC = −0.77) and pyruvic acid (FC = −1.42) during glycolysis, 2-ketoglutaric acid (FC = −1.52) in the citrate cycle, and the elevated cytosine (FC = 2.15) during pyrimidine metabolism. Our data showed that CSFV might rebuild cellular metabolic programs, thus aiding viral replication. These findings may be important in developing targets for new biomarkers for the diagnosis and identification of enzyme inhibitors or metabolites as antiviral drugs, or screening viral gene products as vaccines

    The WUSCHEL-Related Homeobox Gene WOX11 Is Required to Activate Shoot-Borne Crown Root Development in Rice[C][W]

    No full text
    In rice (Oryza sativa), the shoot-borne crown roots are the major root type and are initiated at lower stem nodes as part of normal plant development. However, the regulatory mechanism of crown root development is poorly understood. In this work, we show that a WUSCHEL-related Homeobox (WOX) gene, WOX11, is involved in the activation of crown root emergence and growth. WOX11 was found to be expressed in emerging crown roots and later in cell division regions of the root meristem. The expression could be induced by exogenous auxin or cytokinin. Loss-of-function mutation or downregulation of the gene reduced the number and the growth rate of crown roots, whereas overexpression of the gene induced precocious crown root growth and dramatically increased the root biomass by producing crown roots at the upper stem nodes and the base of florets. The expressions of auxin- and cytokinin-responsive genes were affected in WOX11 overexpression and RNA interference transgenic plants. Further analysis showed that WOX11 directly repressed RR2, a type-A cytokinin-responsive regulator gene that was found to be expressed in crown root primordia. The results suggest that WOX11 may be an integrator of auxin and cytokinin signaling that feeds into RR2 to regulate cell proliferation during crown root development

    An Admission-Control-Based Dynamic Query Tree Protocol for Fast Moving RFID Tag Identification

    No full text
    As one of the key techniques used in the perception layer of the Industrial Internet of Things (IIoT), radio frequency identification (RFID) has been widely applied for object tracing, smart warehouse management, product line monitoring, etc. In most applications, conveyor belts are prevalently implemented to accelerate the sorting efficiency for goods management. However, in such a system, tags quickly go through the reader’s reading range resulting in constant changing of the tag set and limited participating time of moving tags. As a result, it poses more challenges to the tag identification problem in mobile systems than in traditional static applications. In this work, a novel admission-control-based dynamic query tree (ACDQT) protocol is proposed for fast-moving tag identification. In ACDQT, two main strategies are developed, i.e., multi-round admission control (MRAC) and dynamic query tree recognition (DQTR). In MRAC, the reading process of multiple rounds is analyzed, and the number of admitted tags in each round is optimized. Thus, the tag lost ratio is guaranteed, and the identification process can be effectively accelerated. In DQTR, colliding tags are grouped into multiple subsets with the help of consecutive colliding bits in tag responses. By constructing a dynamic query tree, the number of collision slots is greatly reduced, and the identification efficiency in a single round is improved significantly. With MRAC and DQTR, ACDQT can support higher tag flow rate in mobile systems than existing works. Both theoretical analyses and simulation results are presented to demonstrate the effectiveness of ACDQT

    The Rice YABBY1 Gene Is Involved in the Feedback Regulation of Gibberellin Metabolism1[C][W]

    No full text
    Gibberellin (GA) biosynthesis is regulated by feedback control providing a mechanism for GA homeostasis in plants. However, regulatory elements involved in the feedback control are not known. In this report, we show that a rice (Oryza sativa) YABBY1 (YAB1) gene had a similar expression pattern as key rice GA biosynthetic genes GA3ox2 and GA20ox2. Overexpression of YAB1 in transgenic rice resulted in a semidwarf phenotype that could be fully rescued by applied GA. Quantification of the endogenous GA content revealed increases of GA20 and decreases of GA1 levels in the overexpression plants, in which the transcripts of the biosynthetic gene GA3ox2 were decreased. Cosuppression of YAB1 in transgenic plants induced expression of GA3ox2. The repression of GA3ox2 could be obtained upon treatment by dexamethasone of transgenic plants expressing a YAB1-glucocorticoid receptor fusion. Importantly, we show that YAB1 bound to a GA-responsive element within the GA3ox2 promoter. In addition, the expression of YAB1 was deregulated in GA biosynthesis and signaling mutants and could be either transiently induced by GA or repressed by a GA inhibitor. Finally, either overexpression or cosuppression of YAB1 impaired GA-mediated repression of GA3ox2. These data together suggest that YAB1 is involved in the feedback regulation of GA biosynthesis in rice
    corecore