336 research outputs found

    Lysine demethylase 1A exacerbates LPS-induced inflammation of vascular smooth muscle cells through modulation of NF-κB activation

    Get PDF
    Purpose: To study the effect of lysine demethylase 1A (LSD1) on inflammatory responses of vascular smooth muscle cells (VSMCs), and investigate the mechanism. Methods: VSMCs were treated with lipopolysaccharide (LPS). Overexpression and knockdown of LSD1 in VSMCs were performed by transfecting with LSD1 overexpression plasmid and small interfering RNAs (siRNAs), respectively. Western blot and quantitative real-time polymerase chain reaction (qRTPCR) were used to measure protein and mRNA levels. Enzyme-linked immunosorbent (ELISA) assay was used to determine the levels of inflammatory cytokines. Results: Phosphorylation of LSD1 (p-LSD1) was significantly increased in LPS-induced VSMCs. Monocyte chemoattractant protein-1 and IL-6 levels were also increased by LPS, but attenuated by LSD1 knockdown in VSMCs. Activation of NF-κB was increased by LPS, but was also decreased by LSD1 knockdown. Level of methylated p65 (p65-me) in VSMCs was increased by treatment with SET7/9 (p65 methyltransferase), but this effect was attenuated by overexpression of LSD1. Besides, the increased levels of MCP-1 and IL-6 induced by overexpression of LSD1 were reversed by NF-κB signaling inhibitor, PDTC. Conclusion: LSD1 exacerbates LPS-induced inflammation of VSMCs through NF-κB activation via p65 demethylation, which indicates that LSD1 might be a potential target for the treatment of cardiovascular diseases. Keywords: Vascular smooth muscle cells, Lysine demethylase 1A, Phosphorylation, NF-κB, p65, Demethylatio

    Self-supervised Point Cloud Representation Learning via Separating Mixed Shapes

    Full text link
    The manual annotation for large-scale point clouds costs a lot of time and is usually unavailable in harsh real-world scenarios. Inspired by the great success of the pre-training and fine-tuning paradigm in both vision and language tasks, we argue that pre-training is one potential solution for obtaining a scalable model to 3D point cloud downstream tasks as well. In this paper, we, therefore, explore a new self-supervised learning method, called Mixing and Disentangling (MD), for 3D point cloud representation learning. As the name implies, we mix two input shapes and demand the model learning to separate the inputs from the mixed shape. We leverage this reconstruction task as the pretext optimization objective for self-supervised learning. There are two primary advantages: 1) Compared to prevailing image datasets, eg, ImageNet, point cloud datasets are de facto small. The mixing process can provide a much larger online training sample pool. 2) On the other hand, the disentangling process motivates the model to mine the geometric prior knowledge, eg, key points. To verify the effectiveness of the proposed pretext task, we build one baseline network, which is composed of one encoder and one decoder. During pre-training, we mix two original shapes and obtain the geometry-aware embedding from the encoder, then an instance-adaptive decoder is applied to recover the original shapes from the embedding. Albeit simple, the pre-trained encoder can capture the key points of an unseen point cloud and surpasses the encoder trained from scratch on downstream tasks. The proposed method has improved the empirical performance on both ModelNet-40 and ShapeNet-Part datasets in terms of point cloud classification and segmentation tasks. We further conduct ablation studies to explore the effect of each component and verify the generalization of our proposed strategy by harnessing different backbones

    Adaptation of Rice to the Nordic Climate Yields Potential for Rice Cultivation at Most Northerly Site and the Organic Production of Low-Arsenic and High-Protein Rice

    Get PDF
    There is an urgent demand for low-arsenic rice in the global market, particularly for consumption by small children. Soils in Uppsala, Sweden, contain low concentrations of arsenic (As). We hypothesize that if certain japonica paddy rice varieties can adapt to the cold climate and long day length in Uppsala and produce normal grains, such a variety could be used for organic production of low-arsenic rice for safe rice consumption. A japonica paddy rice variety, "Heijing 5," can be cultivated in Uppsala, Sweden, after several years' adaptation, provided that the rice plants are kept under a simple plastic cover when the temperature is below 10 degrees C. Uppsala-adapted "Heijing 5" has a low concentration of 0.1 mg per kg and high protein content of 12.6% per dry weight in brown rice grain, meaning that it thus complies with all dietary requirements determined by the EU and other countries for small children. The high protein content is particularly good for small children in terms of nutrition. Theoretically, Uppsala-adapted "Heijing 5" can produce a yield of around 5100 kg per ha, and it has a potential for organic production. In addition, we speculate that cultivation of paddy rice can remove nitrogen and phosphorus from Swedish river water and reduce nutrient loads to the Baltic Sea and associated algae blooms

    Pretreatment with antiplatelet drugs improves the cardiac function after myocardial infarction without reperfusion in a mouse model

    Get PDF
    Background: Reperfusion therapy is known to improve prognosis and limit myocardial damage aftermyocardial infarction (MI). The administration of antiplatelet drugs prior to percutaneous coronaryintervention also proves beneficial to patients with acute MI (AMI). However, a good number of AMIpatients do not receive reperfusion therapy, and it is not clear if they would benefit from antiplateletpre-treatment.Methods: Experimental C57BL/6 mice were randomly allocated to five groups: the sham group,control, post-treatment, pre-treatment, and pre- and post-treatment groups. Acetylsalicylic acid (15 mg/kg), clopidogrel (11 mg/kg), ticagrelor (27 mg/kg), and prasugrel (1.5 mg/kg) were intragastrically administered in the treatment groups. On day 7 post MI, cardiac function and cardiac fibrosis were evaluated using echocardiography and Masson’s trichrome staining, respectively. Histopathological examinations were performed on tissue sections to grade inflammatory cell infiltration. Platelet inhibition was monitored by measuring thrombin-induced platelet aggregation.Results: Left ventricular ejection fraction and fractional shortening improved significantly (p < 0.01)in the pre-treatment groups when compared to the post-treatment and control groups. A significant(p < 0.01) decrease in cardiac fibrosis was observed in the pre-treatment group, compared with the posttreatment and control groups. Inflammatory cell infiltration significantly decreased in the pre-treatment group compared with the control group (p < 0.05). Thrombin-induced platelet aggregation was significantly inhibited by antiplatelet drugs, but increased with the exposure to H2O2.Conclusions: In the absence of reperfusion therapy, pre-treatment with antiplatelet drugs successfullyimproved cardiac function, reduced cardiac fibrosis and inflammatory cell infiltration, and inhibited oxidative stress-induced platelet aggregation after MI in the mouse model

    4-Ethoxy­imino-N′-methoxy­pyrrolidin-1-ium-3-carboximidamidium dichloride

    Get PDF
    The title compound, C8H18N4O2 2+·2Cl−, contains two oxime groups. The methyl oxime group has a Z configuration, and the ethyl oxime group is disordered, with both Z and E configurations in occupancies of 0.840 (8) and 0.160 (8), respectively. In the crystal structure, there are a number of N—H⋯Cl hydrogen bonds

    High fructan barley lines produced by selective breeding may alter beta-glucan and amylopectin molecular structure

    Get PDF
    Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and beta-glucan. The highest fructan and beta-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units of beta-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch content was associated with high amylose, fructan, and beta-glucan content, and larger building blocks in amylopectin
    corecore