123 research outputs found

    Hybrid Heuristics for Infinite Period Inventory Routing Problem

    Get PDF
    In this paper, we address a one-to-many distribution network inventory routing problem over an infinite planning horizon. Each retailer has an independent, random demand, and the distribution center uses capacitated vehicles for routing delivery. The demand at each retailer is relatively small compared to the vehicle capacity. A novel mathematical model is given to simultaneously decide the optimal routing tours to retailers and routing frequencies of each route. Several heuristics are developed to solve large scale instances of the problem

    Pico- and femto-second optical pulse propagation in semiconductor optical amplifiers: analysis, optimization and quantum transmission line modelling

    Get PDF
    This thesis has theoretically and experimentally investigated the ultrashort optical pulse propagation in semiconductor optical amplifiers (SOAs), which is an important topic in the optical fiber communication and optical signal processing. Some new work has been done: Firstly, effects of carrier heating on the ultrashort optical pulse propagation in quantum well SOAs are first studied taking into account the holes’ non-parabolic density of states; for bulk SOAs, an accurate and simple analytical method to study carrier heating effects is presented based on Fermi-Dirac integrals approximation. Secondly, this thesis reports a novel bias current optimization method for ultrashort optical pulse distortionless amplification in SOAs based on the newly proposed bias current relation function. Detailed theoretical and experimental work is done to analyze the relation between the optimized bias current and the parameters of the input ultrashort pulse train. Finally, a novel modelling technique-quantum transmission line modelling (Q-TLM) method is proposed by combining quantum statistic description and photon-electron dynamic interaction process description. Q-TLM is used to establish models for quantum well and quantum dot structures and analyze the dynamic performance of ultrashort optical pulse propagation in SOAs. The Q-TLM technique provides an effective method to study semiconductor optical devices

    High-speed pulse train amplification in semiconductor optical amplifiers with optimized bias current

    Get PDF
    In this paper, we have experimentally investigated the optimized bias current of semiconductor optical amplifiers (SOAs) to achieve high-speed input pulse train amplification with high gain and low distortion. Variations of the amplified output pulse duration with the amplifier bias currents have been analyzed and, compared to the input pulse duration, the amplified output pulse duration is broadened. As the SOA bias current decreases from the high level (larger than the saturated bias current) to the low level, the broadened pulse duration of the amplified output pulse initially decreases slowly and then rapidly. Based on the analysis, an optimized bias current of SOA for high-speed pulse train amplification is introduced. The relation between the SOA optimized bias current and the parameters of the input pulse train (pulse duration, power, and repetition rate) are experimentally studied. It is found that the larger the input pulse duration, the lower the input pulse power or a higher repetition rate can lead to a larger SOA optimized bias current, which corresponds to a larger optimized SOA gain. The effects of assist light injection and different amplifier temperatures on the SOA optimized bias current are studied and it is found that assist light injection can effectively increase the SOA optimized bias current while SOA has a lower optimized bias current at the temperature 20°C than that at other temperatures

    Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last decade safety concerns have arisen about the use of metal-based nanoparticles in the cosmetics field. Metal-based nanoparticles have been linked to both environmental and animal toxicity in a variety of studies. Perhaps the greatest concern involves the large amounts of TiO<sub>2 </sub>nanoparticles that are used in commercial sunscreens. As an alternative to using these potentially hazardous metal-based nanoparticles, we have isolated organic nanoparticles from English ivy (<it>Hedera helix</it>). In this study, ivy nanoparticles were evaluated for their potential use in sunscreens based on four criteria: 1) ability to absorb and scatter ultraviolet light, 2) toxicity to mammalian cells, 3) biodegradability, and 4) potential for diffusion through skin.</p> <p>Results</p> <p>Purified ivy nanoparticles were first tested for their UV protective effects using a standard spectrophotometric assay. Next the cell toxicity of the ivy nanoparticles was compared to TiO<sub>2 </sub>nanoparticles using HeLa cells. The biodegradability of these nanoparticles was also determined through several digestion techniques. Finally, a mathematical model was developed to determine the potential for ivy nanoparticles to penetrate through human skin. The results indicated that the ivy nanoparticles were more efficient in blocking UV light, less toxic to mammalian cells, easily biodegradable, and had a limited potential to penetrate through human skin. When compared to TiO<sub>2 </sub>nanoparticles, the ivy nanoparticles showed decreased cell toxicity, and were easily degradable, indicating that they provided a safer alternative to these nanoparticles.</p> <p>Conclusions</p> <p>With the data collected from this study, we have demonstrated the great potential of ivy nanoparticles as a sunscreen protective agent, and their increased safety over commonly used metal oxide nanoparticles.</p

    Characterization of physicochemical properties of ivy nanoparticles for cosmetic application

    Get PDF
    Background Naturally occurring nanoparticles isolated from English ivy (Hedera helix) have previously been proposed as an alternative to metallic nanoparticles as sunscreen fillers due to their effective UV extinction property, low toxicity and potential biodegradability. Methods This study focused on analyzing the physicochemical properties of the ivy nanoparticles, specifically, those parameters which are crucial for use as sunscreen fillers, such as pH, temperature, and UV irradiation. The visual transparency and cytotoxicity of ivy nanoparticles were also investigated comparing them with other metal oxide nanoparticles. Results Results from this study demonstrated that, after treatment at 100°C, there was a clear increase in the UV extinction spectra of the ivy nanoparticles caused by the partial decomposition. In addition, the UVA extinction spectra of the ivy nanoparticles gradually reduced slightly with the decrease of pH values in solvents. Prolonged UV irradiation indicated that the influence of UV light on the stability of the ivy nanoparticle was limited and time-independent. Compared to TiO2 and ZnO nanoparticles, ivy nanoparticles showed better visual transparency. Methylthiazol tetrazolium assay demonstrated that ivy nanoparticles exhibited lower cytotoxicity than the other two types of nanoparticles. Results also suggested that protein played an important role in modulating the three-dimensional structure of the ivy nanoparticles. Conclusions Based on the results from this study it can be concluded that the ivy nanoparticles are able to maintain their UV protective capability at wide range of temperature and pH values, further demonstrating their potential as an alternative to replace currently available metal oxide nanoparticles in sunscreen applications. doi:10.1186/1477-3155-11-
    • …
    corecore