108 research outputs found

    Updates of precision medicine in type 2 diabetes

    Get PDF
    Diabetes mellitus is prevalent worldwide and affects 1 in 10 adults. Despite the successful development of glucose-lowering drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors recently, the proportion of patients achieving satisfactory glucose control has not risen as expected. The heterogeneity of diabetes determines that a one-size-fits-all strategy is not suitable for people with diabetes. Diabetes is undoubtedly more heterogeneous than the conventional subclassification, such as type 1, type 2, monogenic and gestational diabetes. The recent progress in genetics and epigenetics of diabetes has gradually unveiled the mechanisms underlying the heterogeneity of diabetes, and cluster analysis has shown promising results in the substratification of type 2 diabetes, which accounts for 95% of diabetic patients. More recently, the rapid development of sophisticated glucose monitoring and artificial intelligence technologies further enabled comprehensive consideration of the complex individual genetic and clinical information and might ultimately realize a precision diagnosis and treatment in diabetics

    Differential Reponses of Hematopoietic Stem and Progenitor Cells to mTOR Inhibition

    Get PDF
    Abnormal activation of the mammalian target of rapamycin (mTOR) signaling pathway has been observed in a variety of human cancers. Therefore, targeting of the mTOR pathway is an attractive strategy for cancer treatment and several mTOR inhibitors, including AZD8055 (AZD), a novel dual mTORC1/2 inhibitor, are currently in clinical trials. Although bone marrow (BM) suppression is one of the primary side effects of anticancer drugs, it is not known if pharmacological inhibition of dual mTORC1/2 affects BM hematopoietic stem and progenitor cells (HSPCs) function and plasticity. Here we report that dual inhibition of mTORC1/2 by AZD or its analogue (KU-63794) depletes mouse BM Lin − Sca-1 + c-Kit + cells in cultures via the induction of apoptotic cell death. Subsequent colony-forming unit (CFU) assays revealed that inhibition of mTORC1/2 suppresses the clonogenic function of hematopoietic progenitor cells (HPCs) in a dose-dependent manner. Surprisingly, we found that dual inhibition of mTORC1/2 markedly inhibits the growth of day-14 cobblestone area-forming cells (CAFCs) but enhances the generation of day-35 CAFCs. Given the fact that day-14 and day-35 CAFCs are functional surrogates of HPCs and hematopoietic stem cells (HSCs), respectively, these results suggest that dual inhibition of mTORC1/2 may have distinct effects on HPCs versus HSCs

    An efficient ECG denoising method by fusing ECA-Net and CycleGAN

    Get PDF
    For wearable electrocardiogram (ECG) acquisition, it was easy to infer motion artifices and other noises. In this paper, a novel end-to-end ECG denoising method was proposed, which was implemented by fusing the Efficient Channel Attention (ECA-Net) and the cycle consistent generative adversarial network (CycleGAN) method. The proposed denoising model was optimized by using the ECA-Net method to highlight the key features and introducing a new loss function to further extract the global and local ECG features. The original ECG signal came from the MIT-BIH Arrhythmia Database. Additionally, the noise signals used in this method consist of a combination of Gaussian white noise and noises sourced from the MIT-BIH Noise Stress Test Database, including EM (Electrode Motion Artifact), BW (Baseline Wander) and MA (Muscle Artifact), as well as mixed noises composed of EM+BW, EM+MA, BW+MA and EM+BW+MA. Moreover, corrupted ECG signals were generated by adding different levels of single and mixed noises to clean ECG signals. The experimental results show that the proposed method has better denoising performance and generalization ability with higher signal-to-noise ratio improvement (SNRimp), as well as lower root-mean-square error (RMSE) and percentage-root-mean-square difference (PRD)

    Association of vitamin D deficiency and subclinical diabetic peripheral neuropathy in type 2 diabetes patients

    Get PDF
    BackgroundDiabetic peripheral neuropathy (DPN) contributes to disability and imposes heavy burdens, while subclinical DPN is lack of attention so far. We aimed to investigate the relationship between vitamin D and distinct subtypes of subclinical DPN in type 2 diabetes (T2DM) patients.MethodsThis cross-sectional study included 3629 T2DM inpatients who undertook nerve conduction study to detect subclinical DPN in Zhongshan Hospital between March 2012 and December 2019. Vitamin D deficiency was defined as serum 25-hydroxyvitamin D (25(OH)D) level < 50 nmol/L.Results1620 (44.6%) patients had subclinical DPN and they were further divided into subgroups: distal symmetric polyneuropathy (DSPN) (n=685), mononeuropathy (n=679) and radiculopathy (n=256). Compared with non-DPN, DPN group had significantly lower level of 25(OH)D (P < 0.05). In DPN subtypes, only DSPN patients had significantly lower levels of 25(OH)D (36.18 ± 19.47 vs. 41.03 ± 18.47 nmol/L, P < 0.001) and higher proportion of vitamin D deficiency (78.54% vs. 72.18%, P < 0.001) than non-DPN. Vitamin D deficiency was associated with the increased prevalence of subclinical DPN [odds ratio (OR) 1.276, 95% confidence interval (CI) 1.086-1.501, P = 0.003] and DSPN [OR 1. 646, 95% CI 1.31-2.078, P < 0.001], independent of sex, age, weight, blood pressure, glycosylated hemoglobin, T2DM duration, calcium, phosphorus, parathyroid hormone, lipids and renal function. The association between vitamin D deficiency and mononeuropathy or radiculopathy was not statistically significant. A negative linear association was observed between 25(OH)D and subclinical DSPN. Vitamin D deficiency maintained its significant association with subclinical DSPN in all age groups.ConclusionsVitamin D deficiency was independently associated with subclinical DSPN, rather than other DPN subtypes

    Circulating Fibroblast Growth Factor 21 Levels Are Closely Associated with Hepatic Fat Content: A Cross-Sectional Study

    Get PDF
    BACKGROUND AND AIMS: Fibroblasts growth factor 21 (FGF21), a liver-secreted endocrine factor involved in regulating glucose and lipid metabolism, has been shown to be elevated in patients with non-alcoholic fatty liver disease (NAFLD). This study aimed to evaluate the quantitative correlation between serum FGF21 level and hepatic fat content. METHODS: A total of 138 subjects (72 male and 66 female) aged from 18 to 65 years with abnormal glucose metabolism and B-ultrasonography diagnosed fatty liver were enrolled in the study. Serum FGF21 levels were determined by an in-house chemiluminescence immunoassay and hepatic fat contents were measured by proton magnetic resonance spectroscopy. RESULTS: Serum FGF21 increased progressively with the increase of hepatic fat content, but when hepatic fat content increased to the fourth quartile, FGF21 tended to decline. Serum FGF21 concentrations were positively correlated with hepatic fat content especially in subjects with mild/moderate hepatic steatosis (r = 0.276, p = 0.009). Within the range of hepatic steatosis from the first to third quartile, FGF21 was superior to any other traditional clinical markers including ALT to reflect hepatic fat content. When the patients with severe hepatic steatosis (the fourth quartile) were included, the quantitative correlation between FGF21 and hepatic fat content was weakened. CONCLUSIONS: Serum FGF21 was a potential biomarker to reflect the hepatic fat content in patients with mild or moderate NAFLD. In severe NAFLD patients, FGF21 concentration might decrease due to liver inflammation or injury

    Efficacy of berberine in patients with non-alcoholic fatty liver disease

    No full text
    <p>Animal liver gene expression of the study  Efficacy of berberine in patients with non-alcoholic fatty liver disease</p
    • …
    corecore