5 research outputs found

    A Review on Styrene Substitutes in Thermosets and Their Composites

    No full text
    In recent decades, tremendous interest and technological development have been poured into thermosets and their composites. The thermosets and composites with unsaturated double bonds curing system are especially concerned due to their versatility. To further exploit such resins, reactive diluents (RDs) with unsaturated sites are usually incorporated to improve their processability and mechanical properties. Traditional RD, styrene, is a toxic volatile organic compound and one of the anticipated carcinogens warned by the National Institute of Health, USA. Most efforts have been conducted on reducing the usage of styrene in the production of thermosets and their composites, while very few works have systematically summarized these literatures. Herein, recent developments regarding styrene substitutes in thermosets and their composites are reviewed. Potential styrene alternatives, such as vinyl derivatives of benzene and (methyl)acrylates are discussed in details. Emphasis is focused on the strategies on developing novel RD monomers through grafting unsaturated functional groups on renewable feedstocks such as carbohydrates, lignin, and fatty acids. This review also highlights the development and characteristics of RD monomers and their influence on processability and mechanical performance of the resulting thermosets and composites

    Preparation and Performance of Cement Mortar Reinforced by Modified Bamboo Fibers

    No full text
    This study aims to prepare bamboo-fiber-reinforced cement composites and provide a solution to the issue of poor interfacial adhesion between bamboo fibers and cement matrix. The original bamboo fibers were modified by three moderately low-cost and easy-to-handle treatments including glycerol, aluminate ester, and silane treatments. The performance of the modified bamboo-fiber-reinforced cement composites was evaluated by a series of mechanical and durability tests, including flexural and compressive strength, water absorption, chloride ion penetration, drying shrinkage, freeze–thaw resistance, and carbonization. In addition, the microstructures of composites were characterized using a scanning electron microscope (SEM). The results showed that the composites reinforced with glycerol-modified bamboo fibers had 14% increased flexural strength and comparable compressive strength. From durability perspectives, all treatments showed similar performance in drying shrinkage, whereas aluminate ester treatment was the most effective in terms of impermeability, chloride resistance, freeze–thaw resistance, and carbonization. The results could provide insights to efficient and effective natural fiber treatment to enable better performance of natural-fiber-reinforced cement-based materials
    corecore