23 research outputs found

    The giant panda gut harbors a high diversity of lactic acid bacteria revealed by a novel culturomics pipeline

    Get PDF
    Some lactic acid bacteria (LAB) can provide significant health benefits, which are critically important for the conservation of endangered animals, such as giant pandas. However, little is known about the diversity and culturability of LAB in the giant panda gut microbiota. To understand the roles of LAB in giant panda conservation, it is critical to culture bacterial strains of interest. In this study, we established a pipeline to culture bacterial strains using enrichment of target bacteria with different liquid media and growth conditions. Then, the strains were isolated in solid media to study their functions. Using 210 samples from the culture enrichment method and 138 culture-independent samples, we obtained 1120 amplicon sequencing variants (ASVs) belonging to Lactobacillales. Out of the 1120 ASVs, 812 ASVs from the culture enrichment approach were twofold more diverse than 336 ASVs from the culture-independent approach. Many ASVs of interest were not detected in the culture-independent approach. Using this pipeline, we isolated many relevant bacterial strains and established a giant panda gut bacteria strain collection that included strains with low-abundance in culture-independent samples and included most of the giant panda LAB described by other researchers. The strain collection consisted of 60 strains representing 35 species of 12 genera. Thus, our pipeline is powerful and provides guidance in culturing gut microbiota of interest in hosts such as the giant panda.This article is published as Zhang W, Zheng L, Xie J, Su X, Zhang M, Huang H, Schmitz-Esser S, Du S, Yang Y, Xie J, Zhang Q, Yu S, Guo Q, Wang H, Zhang L, Yang K, Hou R. 2024. The giant panda gut harbors a high diversity of lactic acid bacteria revealed by a novel culturomics pipeline. mSystems 9:e00520-24. https://doi.org/10.1128/msystems.00520-24. Copyright © 2024 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license

    Graphene oxide significantly inhibits cell growth at sublethal concentrations by causing extracellular iron deficiency

    No full text
    <p>Graphene oxide (GO)-based materials are increasingly being used in medical materials and consumer products. However, their sublethal effects on biological systems are poorly understood. Here, we report that GO (at 10 to 160 mg/L) induced significant inhibitory effects on the growth of different unicellular organisms, including eukaryotes (i.e. <i>Saccharomyces cerevisiae</i>, <i>Candida albicans</i>, and <i>Komagataella pastoris</i>) and prokaryotes (<i>Pseudomonas fluorescens</i>). Growth inhibition could not be explained by commonly reported cytotoxicity mechanisms such as plasma membrane damage or oxidative stress. Based on transcriptomic analysis and measurement of extra- and intracellular iron concentrations, we show that the inhibitory effect of GO was mainly attributable to iron deficiency caused by binding to the O-functional groups of GO, which sequestered iron and disrupted iron-related physiological and metabolic processes. This inhibitory mechanism was corroborated with supplementary experiments, where adding bathophenanthroline disulfonate—an iron chelating agent—to the culture medium exerted similar inhibition, whereas removing surface O-functional groups of GO decreased iron sequestration and significantly alleviated the inhibitory effect. These findings highlight a potential indirect detrimental effect of nanomaterials (i.e. scavenging of critical nutrients), and encourage research on potential biomedical applications of GO-based materials to sequester iron and enhance treatment of iron-dependent diseases such as cancer and some pathogenic infections.</p

    Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds

    No full text
    <span lang="EN-US" style="font-family: &quot;Calibri&quot;,&quot;sans-serif&quot;; font-size: 10.5pt; mso-bidi-font-size: 11.0pt; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: 宋体; mso-fareast-theme-font: minor-fareast; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;"><font color="#000000">To induce human mesenchymal stem cells (hMSCs) to differentiate into chondrocytes in three-dimensional (3D) microenvironments, we developed porous hydrogel scaffolds using the cartilage extracellular matrix (ECM) components of chondroitin sulfate (CS) and collagen (COL). The turbidity and viscosity experiments indicated hydrogel could form through pH-triggered co-precipitation when pH = 2-3. Enzyme-linked immunosorbent assay (ELISA) confirmed the hydrogel scaffolds could controllably release growth factors as envisaged. Transforming growth factor-beta (TGF-beta) was released to stimulate hMSCs differentiation into chondrocytes; and then collagen binding domain-basic fibroblast growth factor (CBD-bFGF) was released to improve the differentiation and preserve the chondrocyte phenotype. In in vitro cell culture experiments, the differentiation processes were compared in different microenvironments: 2D culture in culture plate as control, 3D culture in the fabricated scaffolds without growth factors (CC), the samples with CBD-bFGF (CC-C), the samples with TGF-beta (CC-T), the samples with CBD-bFGF/TGF-beta (CC-CT). Real-time polymerase chain reaction (RT-PCR) revealed the hMSC marker genes of CD44 and CD105 decreased; at the same time the chondrocyte marker genes of collagen type II and aggrecan increased, especially in the CC-CT sample. lmmunostaining results further confirmed the hMSC marker protein of CD 44 disappeared and the chondrocyte marker protein of collagen type II emerged over time in the CC-CT sample. These results imply the ECM-based hydrogel scaffolds with growth factors can supply suitable 3D cell niches for hMSCs differentiation into chondrocytes and the differentiation process can be regulated by the controllably released growth factors. (C) 2013 Elsevier B.V. All rights reserved.</font></span
    corecore