68 research outputs found

    The Application of Augmented Reality Technology for the Anesthesiology Major

    Get PDF
    Anesthesiology is an important subject for in-depth research in the fields of clinical anesthesia, critical care medicine, first-aid and resuscitation, and pain treatment. As an important branch of clinical medicine, it has strong practicality and applicability. It has the commonality of clinical medicine and the specialty of anesthesiology. Carrying out anesthesiology practice teaching using augmented reality (AR) to simulate the experimental environment and scene simulation is of great significance to promoting the development of anesthesia practice teaching. This article mainly introduces the augmented reality technology. It not only analyzes the main forms of augmented reality technology in anesthesiology, but also explores the application of augmented reality technology for anesthesiology in the new era

    Representation Disparity-aware Distillation for 3D Object Detection

    Full text link
    In this paper, we focus on developing knowledge distillation (KD) for compact 3D detectors. We observe that off-the-shelf KD methods manifest their efficacy only when the teacher model and student counterpart share similar intermediate feature representations. This might explain why they are less effective in building extreme-compact 3D detectors where significant representation disparity arises due primarily to the intrinsic sparsity and irregularity in 3D point clouds. This paper presents a novel representation disparity-aware distillation (RDD) method to address the representation disparity issue and reduce performance gap between compact students and over-parameterized teachers. This is accomplished by building our RDD from an innovative perspective of information bottleneck (IB), which can effectively minimize the disparity of proposal region pairs from student and teacher in features and logits. Extensive experiments are performed to demonstrate the superiority of our RDD over existing KD methods. For example, our RDD increases mAP of CP-Voxel-S to 57.1% on nuScenes dataset, which even surpasses teacher performance while taking up only 42% FLOPs.Comment: Accepted by ICCV2023. arXiv admin note: text overlap with arXiv:2205.15156 by other author

    Shadow-Aware Dynamic Convolution for Shadow Removal

    Full text link
    With a wide range of shadows in many collected images, shadow removal has aroused increasing attention since uncontaminated images are of vital importance for many downstream multimedia tasks. Current methods consider the same convolution operations for both shadow and non-shadow regions while ignoring the large gap between the color mappings for the shadow region and the non-shadow region, leading to poor quality of reconstructed images and a heavy computation burden. To solve this problem, this paper introduces a novel plug-and-play Shadow-Aware Dynamic Convolution (SADC) module to decouple the interdependence between the shadow region and the non-shadow region. Inspired by the fact that the color mapping of the non-shadow region is easier to learn, our SADC processes the non-shadow region with a lightweight convolution module in a computationally cheap manner and recovers the shadow region with a more complicated convolution module to ensure the quality of image reconstruction. Given that the non-shadow region often contains more background color information, we further develop a novel intra-convolution distillation loss to strengthen the information flow from the non-shadow region to the shadow region. Extensive experiments on the ISTD and SRD datasets show our method achieves better performance in shadow removal over many state-of-the-arts. Our code is available at https://github.com/xuyimin0926/SADC

    1xN Pattern for Pruning Convolutional Neural Networks

    Full text link
    Though network pruning receives popularity in reducing the complexity of convolutional neural networks (CNNs), it remains an open issue to concurrently maintain model accuracy as well as achieve significant speedups on general CPUs. In this paper, we propose a novel 1xN pruning pattern to break this limitation. In particular, consecutive N output kernels with the same input channel index are grouped into one block, which serves as a basic pruning granularity of our pruning pattern. Our 1xN pattern prunes these blocks considered unimportant. We also provide a workflow of filter rearrangement that first rearranges the weight matrix in the output channel dimension to derive more influential blocks for accuracy improvements and then applies similar rearrangement to the next-layer weights in the input channel dimension to ensure correct convolutional operations. Moreover, the output computation after our 1xN pruning can be realized via a parallelized block-wise vectorized operation, leading to significant speedups on general CPUs. The efficacy of our pruning pattern is proved with experiments on ILSVRC-2012. For example, Given the pruning rate of 50% and N=4, our pattern obtains about 3.0% improvements over filter pruning in the top-1 accuracy of MobileNet-V2. Meanwhile, it obtains 56.04ms inference savings on Cortex-A7 CPU over weight pruning. Our project is made available at https://github.com/lmbxmu/1xN

    Knowledge Condensation Distillation

    Full text link
    Knowledge Distillation (KD) transfers the knowledge from a high-capacity teacher network to strengthen a smaller student. Existing methods focus on excavating the knowledge hints and transferring the whole knowledge to the student. However, the knowledge redundancy arises since the knowledge shows different values to the student at different learning stages. In this paper, we propose Knowledge Condensation Distillation (KCD). Specifically, the knowledge value on each sample is dynamically estimated, based on which an Expectation-Maximization (EM) framework is forged to iteratively condense a compact knowledge set from the teacher to guide the student learning. Our approach is easy to build on top of the off-the-shelf KD methods, with no extra training parameters and negligible computation overhead. Thus, it presents one new perspective for KD, in which the student that actively identifies teacher's knowledge in line with its aptitude can learn to learn more effectively and efficiently. Experiments on standard benchmarks manifest that the proposed KCD can well boost the performance of student model with even higher distillation efficiency. Code is available at https://github.com/dzy3/KCD.Comment: ECCV202

    Fine-grained Data Distribution Alignment for Post-Training Quantization

    Full text link
    While post-training quantization receives popularity mostly due to its evasion in accessing the original complete training dataset, its poor performance also stems from scarce images. To alleviate this limitation, in this paper, we leverage the synthetic data introduced by zero-shot quantization with calibration dataset and propose a fine-grained data distribution alignment (FDDA) method to boost the performance of post-training quantization. The method is based on two important properties of batch normalization statistics (BNS) we observed in deep layers of the trained network, (i.e.), inter-class separation and intra-class incohesion. To preserve this fine-grained distribution information: 1) We calculate the per-class BNS of the calibration dataset as the BNS centers of each class and propose a BNS-centralized loss to force the synthetic data distributions of different classes to be close to their own centers. 2) We add Gaussian noise into the centers to imitate the incohesion and propose a BNS-distorted loss to force the synthetic data distribution of the same class to be close to the distorted centers. By utilizing these two fine-grained losses, our method manifests the state-of-the-art performance on ImageNet, especially when both the first and last layers are quantized to the low-bit. Code is at \url{https://github.com/zysxmu/FDDA}.Comment: ECCV202

    Open Vocabulary Object Detection with Proposal Mining and Prediction Equalization

    Full text link
    Open-vocabulary object detection (OVD) aims to scale up vocabulary size to detect objects of novel categories beyond the training vocabulary. Recent work resorts to the rich knowledge in pre-trained vision-language models. However, existing methods are ineffective in proposal-level vision-language alignment. Meanwhile, the models usually suffer from confidence bias toward base categories and perform worse on novel ones. To overcome the challenges, we present MEDet, a novel and effective OVD framework with proposal mining and prediction equalization. First, we design an online proposal mining to refine the inherited vision-semantic knowledge from coarse to fine, allowing for proposal-level detection-oriented feature alignment. Second, based on causal inference theory, we introduce a class-wise backdoor adjustment to reinforce the predictions on novel categories to improve the overall OVD performance. Extensive experiments on COCO and LVIS benchmarks verify the superiority of MEDet over the competing approaches in detecting objects of novel categories, e.g., 32.6% AP50 on COCO and 22.4% mask mAP on LVIS

    Unified and Dynamic Graph for Temporal Character Grouping in Long Videos

    Full text link
    Video temporal character grouping locates appearing moments of major characters within a video according to their identities. To this end, recent works have evolved from unsupervised clustering to graph-based supervised clustering. However, graph methods are built upon the premise of fixed affinity graphs, bringing many inexact connections. Besides, they extract multi-modal features with kinds of models, which are unfriendly to deployment. In this paper, we present a unified and dynamic graph (UniDG) framework for temporal character grouping. This is accomplished firstly by a unified representation network that learns representations of multiple modalities within the same space and still preserves the modality's uniqueness simultaneously. Secondly, we present a dynamic graph clustering where the neighbors of different quantities are dynamically constructed for each node via a cyclic matching strategy, leading to a more reliable affinity graph. Thirdly, a progressive association method is introduced to exploit spatial and temporal contexts among different modalities, allowing multi-modal clustering results to be well fused. As current datasets only provide pre-extracted features, we evaluate our UniDG method on a collected dataset named MTCG, which contains each character's appearing clips of face and body and speaking voice tracks. We also evaluate our key components on existing clustering and retrieval datasets to verify the generalization ability. Experimental results manifest that our method can achieve promising results and outperform several state-of-the-art approaches

    Recent developments of metamaterials/metasurfaces for RCS reduction

    Get PDF
    In this paper, recent developments of metamaterials and metasurfaces for RCS reduction are reviewed, including basic theory, working principle, design formula, and experimental verification. Super-thin cloaks mediated by metasurfaces can cloak objects with minor impacts on the original electromagnetic field distribution. RCS reduction can be achieved by reconfiguring scattering patterns using coding metasurfaces. Novel radar absorbing materials can be devised based on field enhancements of metamaterials. When combined with conventional radar absorbing materials, metamaterials can expand the bandwidth, enlarge the angular range, or reduce the weight. Future tendency and major challenges are also summarized
    corecore