87 research outputs found

    Two-Dimensional Analysis of the Diabatic Transition of a General Vectorial Physical Observable Based on Adiabatic-to-Diabatic Transformation.

    Get PDF
    We present a full analysis of the magnitude and orientation of the diabatic transition matrix element of a general vectorial physical observable during the adiabatic-to-diabatic transformation. The diabatic transition is a function of the adiabatic-to-diabatic transformation angle and the two basic vectors of the adiabatic states, which are the off-diagonal matrix element and the difference between the two diagonal matrix elements. To the best of our knowledge, this is the first time that the transformation has been accomplished in a more general two-dimensional scale for a vectorial physical observable. All possible extreme values of a diabatic transition are deduced for systems with different features. By using an approximate diabatic transition dipole, the pilot implementation of the analysis produces an electronic coupling curve nearly identical to that obtained by the generalized Mulliken-Hush method for the testing molecule. Evidently, this complete analysis of a diabatic transition will be very useful in determining the adiabatic-to-diabatic transformation angle by using a physical observable and can also be used to evaluate the quality of various approximations for constructing the diabatic states

    Surface mass balance and ice flow of the glaciers Austre Lovénbreen and Pedersenbreen, Svalbard, Arctic

    Get PDF
    The glaciers Austre LovĂ©nbreen and Pedersenbreen are located at Ny-Ålesund, Svalbard. The surface mass balance and ice flow velocity of both glaciers have been determined from the first year of observations(2005/2006), while the front edge of Austre LovĂ©nbreen was also surveyed. The results are as follows: (1)The net mass balances of Austre LovĂ©nbreen and Pedersenbreen are -0.44 and -0.20 m w. e., the annual ablation is -0.99 and -0.94m w. e., and the corresponding equilibrium line altitudes are 478.10 and 494.87 m, respectively (2)Austre LovĂ©nbreen and Pedersenbreen are characterized as ice flow models of surge-type glaciers in Svalbard. The horizontal vectors of the ice flow velocities are parallel or converge to the central lines of both glaciers, with lower velocities in the lower ablation areas and higher velocities in the middle and upper reaches of the glaciers. The vertical vectors of ice flow velocities show that there is a mass loss in the ablation areas, which reduces with increasing altitude, while there is a mass gain near the equilibrium line of Austre LovĂ©nbreen. (3)The front edge of Austre LovĂ©nbreen receded at an average rate of 21.83 m·a-1, with remarkable variability-a maximum rate of 77.30m·a-1 and a minimum rate of 2.76m·a-1

    Genetically engineered cell membrane-coated nanoparticles for antibacterial and immunoregulatory dual-function treatment of ligature-induced periodontitis

    Get PDF
    Purpose: In order to overcome the problem that conventional pharmacological treatments of periodontitis cannot effectively synergizing antimicrobial and immunomodulation, inspired by the critical role of toll-like receptor 4 (TLR4) in bacterial recognition and immune activation, we demonstrated a combined antibacterial-immunoregulatory strategy based on biomimetic nanoparticles.Methods: Functioned cell membranes and silk fibroin nanoparticles (SNs) loaded with minocycline hydrochloride (Mino) were used to prepare a biomimetic nanoparticle (MSNCs). SNs and MSNCs were characterized by Scanning Electron Microscope, size, zeta potential, dispersion index. At the same time, SNs were characterized by cell counting kit-8 and real-time Polymerase Chain Reaction (RT-PCR). TLR4-expressing cell membranes were characterized by RT-PCR and western blot (WB). Cell membrane coating was characterized by Transmission Electron Microscope (TEM), the Bradford staining and WB. Then, Laser confocal, flow cytometry and agar plate coating were evaluated in vitro with antibacterial effects, RT-PCR was simultaneously evaluated with immunoregulatory effects. Finally, Anti-inflammatory treatment of MSNCs was evaluated in a ligature-induced periodontitis (LIP) mouse model.Results: Successfully prepared cell membranes overexpressing TLR4 and constructed MSNCs. In vitro studies had shown that MSNCs effectively targeted bacteria via TLR4 and acted as molecular decoys to competitively neutralize lipopolysaccharide (LPS) in the microenvironment as well as inhibit inflammatory activation of macrophages. In vivo, MSNCs effectively attenuated periodontal tissue inflammation and alveolar bone loss in a LIP mouse model.Conclusion: MSNCs have good targeted antibacterial and immunoregulatory effects, and provide a new and effective strategy for the treatment of periodontitis and have good potential for application in various types of pathogenic bacterial infections

    Expression characteristics of piRNAs in ovine luteal phase and follicular phase ovaries

    Get PDF
    PIWI-interacting RNAs (piRNAs), as a novel class of small non-coding RNAs that have been shown to be indispensable in germline integrity and stem cell development. However, the expressed characteristics and regulatory roles of piRNAs during different reproductive phases of animals remain unknown. In this study, we investigated the piRNAs expression profiles in ovaries of sheep during the luteal phase (LP) and follicular phase (FP) using the Solexa sequencing technique. A total of 85,219 and 1,27,156 piRNAs tags were identified in ovine ovaries across the two phases. Most expressed piRNAs start with uracil. piRNAs with a length of 24 nt or 27–29 nts accounted for the largest proportion. The obvious ping-pong signature appeared in the FP ovary. The piRNA clusters in the sheep ovary were unevenly distributed on the chromosomes, with high density on Chr 3 and 1. For genome distribution, piRNAs in sheep ovary were mainly derived from intron, CDS, and repeat sequence regions. Compared to the LP ovary, a greater number of expressed piRNA clusters were detected in the FP ovary. Simultaneously, we identified 271 differentially expressed (DE) piRNAs between LP and FP ovaries, with 96 piRNAs upregulated and 175 piRNAs downregulated, respectively. Functional enrichment analysis (GO and KEGG) indicated that their target genes were enriched in reproduction-related pathways including oocyte meiosis, PI3K-Akt, Wnt, and TGF-ÎČ signaling pathways. Together, our results highlighted the sequence and expression characteristics of the piRNAs in the sheep ovary, which will help us understand the roles of piRNAs in the ovine estrus cycle

    Comparative proteomics of ovaries elucidated the potential targets related to ovine prolificacy

    Get PDF
    Small Tail Han (STH) sheep, a unique Chinese breed, is recognized for its early maturity, year-round estrus, and prolificacy. However, the molecular mechanism of its high prolificacy has not been fully elucidated. The Proteomics approach is feasible and effective to reveal the proteins involved in the complex physiological processes of any organism. Given this, we performed the protein expression profiling of ovarian tissues during the luteal phase using polytocous STH sheep (litter size ≄2, three consecutive lambings) and monotocous STH sheep (litter size =1, three consecutive lambings) (PL vs. ML), and the follicular phase using polytocous STH sheep (litter size ≄2, three consecutive lambings) and monotocous STH sheep (litter size =1, three consecutive lambings) (PF vs. MF), respectively. Parallel Reaction Monitoring (PRM) was conducted to validate the differentially abundant proteins (DAPs). The tandem mass tag (TMT) quantitative proteomic results showed that a total of 5,237 proteins were identified, of which 49 and 44 showed differential abundance in the PL vs. ML and PF vs. MF groups, respectively. Enrichments analyses indicated that the DAPs including TIA1 cytotoxic granule-associated RNA-binding protein-like 1 (TIAL1), nicotinamide phosphoribosyltransferase (NAMPT), and cellular retinoic acid-binding protein 1 (CRABP1) were enriched at the luteal phase, while TIAL1, inhibin beta-a-subunit (A2ICA4), and W5PG55 were enriched at the follicular phase, potentially mediating reproductive processes in polytocous ewes. Furthermore, six DAPs were verified using PRM, confirming the accuracy of the TMT data acquired in this study. Together, our work expanded the database of indigenous sheep breeds and provided new ovarian candidate molecular targets, which will help in the study of the genetic mechanisms of ovine prolificacy

    High-Throughput Sequencing Analysis of Endophytic Bacteria Diversity in Fruits of White and Red Pitayas from Three Different Origins

    Get PDF
    Pitaya contains various types of polyphenols, flavonoid and vitamins which are beneficial for health and it is among the most important commercial tropical fruits worldwide. Endophytic bacteria might be beneficial for plant growth and yield. However, bacterial diversity in pitaya is poorly characterized. In this study, fruits of white and red pitayas from three different origins (Thailand, Vietnam and China) were chosen for endophytic bacteria diversity investigation by using Illumina HiSeq second-generation high-throughput sequencing technology. Large number of endophytic bacteria were detected and 22 phyla, 56 classes, 81 orders, 122 families and 159 genera were identified. Endophytic bacteria diversity was uneven among pitaya fruits from different origins and bacteria structure was different between white pitaya group and red pitaya group. Phylum Bacteroidetes, classes Bacteroidia and Coriobacteriia, orders Bacteroidales and Coriobacteriales, families Prevotellaceae, Bacteroidaceae, Ruminococcaceae, Paraprevotellaceae, Rikenellaceae, Alcaligenaceae and Coriobacteriaceae, genera Prevotella, Bacteroides, Roseburia, Faecalibacterium and Sutterella were statistically significant different species (P < 0.05) between white and red pitayas. These findings might be useful for growth improvement, fruit preservation and processing of different pitaya species from different origins

    Gypsum bonded investment for micro-structure casting of ZnAl4

    No full text
    The effects of sintering temperature on the surface roughness of gypsum bonded investments were investigated to find the appropriate sintering temperature applied for micro-investment casting. The surface roughness tests were carried out at sintering temperatures ranging from room temperature to 1,000 ℃ for investment compounds mixed from calcium sulphate α-hemihydrate and quartz powder (wt.%, 6:4; 5:5, 4:6, 3:7). In this experiment, each investment compound was prepared by pouring the investment materials into a plastic bottle with the good surface roughness (Ra ~0.2 ÎŒm). DTA-TG curves were measured using a thermal analyzer to investigate the difference of surface roughness at different temperatures. The results show that the surface roughness of gypsum bonded investment is temperature sensitive. The preheating temperature of the mold should be up to 600 ℃, but not over 700 ℃, and the investment compound with 60 % plaster and 40 % quartz powder is applicable for preparing the micro-structures. The micro-structures with 100 ÎŒm diameter were produced in the present studies. The results show that the surface roughness of the casting is only Ra ~0.51 ”m, slightly rougher than that of the investment mold

    Review of Maximum Power Point Tracking Algorithm for Tidal Turbine Generator

    No full text
    Tidal energy is a clean and environment-friendly energy source. It has many advantages such as sustainability, low initial cost, abundant and highly predictable due to its regular pattern. The working principle of tidal energy conversion system (TECS) is to use the potential and kinetic energy of the ocean waves caused by the celestial gravitation to drive the turbine that is coupled with a generator to produce electricity. However, due to the physical structure of the generator, the power output is closely related with water speed, direction, load amount, etc., which show highly non-linear characteristics. The water speed and direction of the tidal stream are closely related to the moon phase, which can be considered as deterministic factor. However, there are non-deterministic factors such as sea habitat migration, seaweed entanglement, bio-foiling, etc. that can make the power output sub-optimal. In order to extract the maximum potential of tidal power in terms of electricity, the maximum power point (MPP) needs to be monitored and tracked in real time. In this paper, we will review state-of-the-art MPP tracking (MPPT) of TECS such as optimal tip speed ratio (TSR) method, optimum relation based (ORB) method, and perturb and observe (P&O) method. Based on the reviewed methods, we summarize the principles, advantages and limitations of the methods, and show the performance of MPPT based on P&O in TECS with simulated results.Accepted versio

    Identification of Differentially Expressed miRNAs in Porcine Adipose Tissues and Evaluation of Their Effects on Feed Efficiency

    No full text
    Feed efficiency (FE) is a very important trait affecting the economic benefits of pig breeding enterprises. Adipose tissue can modulate a variety of processes such as feed intake, energy metabolism and systemic physiological processes. However, the mechanism by which microRNAs (miRNAs) in adipose tissues regulate FE remains largely unknown. Therefore, this study aimed to screen potential miRNAs related to FE through miRNA sequencing. The miRNA profiles in porcine adipose tissues were obtained and 14 miRNAs were identified differentially expressed in adipose tissues of pigs with extreme differences in FE, of which 9 were down-regulated and 5 were up-regulated. GO and KEGG analyses indicated that these miRNAs were significantly related to lipid metabolism and these miRNAs modulated FE by regulating lipid metabolism. Subsequently, quantitative reverse transcription–polymerase chain reaction (qRT-PCR) of five randomly selected DEMs was used to verify the reliability of miRNA-seq data. Furthermore, 39 differentially expressed target genes of these DEMs were obtained, and DEMs–target mRNA interaction networks were constructed. In addition, the most significantly down-regulated miRNAs, ssc-miR-122-5p and ssc-miR-192, might be the key miRNAs for FE. Our results reveal the mechanism by which adipose miRNAs regulate feed efficiency in pigs. This study provides a theoretical basis for the further study of swine feed efficiency improvement
    • 

    corecore