4,227 research outputs found

    Reducing variance in univariate smoothing

    Full text link
    A variance reduction technique in nonparametric smoothing is proposed: at each point of estimation, form a linear combination of a preliminary estimator evaluated at nearby points with the coefficients specified so that the asymptotic bias remains unchanged. The nearby points are chosen to maximize the variance reduction. We study in detail the case of univariate local linear regression. While the new estimator retains many advantages of the local linear estimator, it has appealing asymptotic relative efficiencies. Bandwidth selection rules are available by a simple constant factor adjustment of those for local linear estimation. A simulation study indicates that the finite sample relative efficiency often matches the asymptotic relative efficiency for moderate sample sizes. This technique is very general and has a wide range of applications.Comment: Published at http://dx.doi.org/10.1214/009053606000001398 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Using Swing Resistance and Assistance to Improve Gait Symmetry in Individuals Post-Stroke

    Get PDF
    A major characteristic of hemiplegic gait observed in individuals post-stroke is spatial and temporal asymmetry, which may increase energy expenditure and the risk of falls. The purpose of this study was to examine the effects of swing resistance/assistance applied to the affected leg on gait symmetry in individuals post-stroke. We recruited 10 subjects with chronic stroke who demonstrated a shorter step length with their affected leg in comparison to the non-affected leg during walking. They participated in two test sessions for swing resistance and swing assistance, respectively. During the adaptation period, subjects counteracted the step length deviation caused by the applied swing resistance force, resulting in an aftereffect consisting of improved step length symmetry during the post-adaptation period. In contrast, subjects did not counteract step length deviation caused by swing assistance during adaptation period and produced no aftereffect during the post-adaptation period. Locomotor training with swing resistance applied to the affected leg may improve step length symmetry through error-based learning. Swing assistance reduces errors in step length during stepping; however, it is unclear whether this approach would improve step length symmetry. Results from this study may be used to develop training paradigms for improving gait symmetry of stroke survivors

    Optical transitions between Landau levels: AA-stacked bilayer graphene

    Full text link
    The low-frequency optical excitations of AA-stacked bilayer graphene are investigated by the tight-binding model. Two groups of asymmetric LLs lead to two kinds of absorption peaks resulting from only intragroup excitations. Each absorption peak obeys a single selection rule similar to that of monolayer graphene. The excitation channel of each peak is changed as the field strength approaches a critical strength. This alteration of the excitation channel is strongly related to the setting of the Fermi level. The peculiar optical properties can be attributed to the characteristics of the LL wave functions of the two LL groups. A detailed comparison of optical properties between AA-stacked and AB-stacked bilayer graphenes is also offered. The compared results demonstrate that the optical properties are strongly dominated by the stacking symmetry. Furthermore, the presented results may be used to discriminate AABG from MG, which can be hardly done by STM

    Robotic Resistance/Assistance Training Improves Locomotor Function in Individuals Poststroke: A Randomized Controlled Study

    Get PDF
    Objective To determine whether providing a controlled resistance versus assistance to the paretic leg at the ankle during treadmill training will improve walking function in individuals poststroke. Design Repeated assessment of the same patients with parallel design and randomized controlled study between 2 groups. Setting Research units of rehabilitation hospitals. Participants Patients (N=30) with chronic stroke. Intervention Subjects were stratified based on self-selected walking speed and were randomly assigned to the resistance or assistance training group. For the resistance group, a controlled resistance load was applied to the paretic leg at the ankle to resist leg swing during treadmill walking. For the assistance group, a load that assists swing was applied. Main Outcome Measures Primary outcome measures were walking speed and 6-minute walking distance. Secondary measures included clinical assessments of balance, muscle tone, and quality of life. Outcome measures were evaluated before and after 6 weeks of training and at 8 weeks\u27 follow-up, and compared within group and between the 2 groups. Results After 6 weeks of robotic training, walking speed significantly increased for both groups, with no significant differences in walking speed gains observed between the 2 groups. In addition, 6-minute walking distance and balance significantly improved for the assistance group but not for the resistance group. Conclusions Applying a controlled resistance or an assistance load to the paretic leg during treadmill training may induce improvements in walking speed in individuals poststroke. Resistance training was not superior to assistance training in improving locomotor function in individuals poststroke

    A Novel Cable-Driven Robotic Training Improves Locomotor Function in Individuals Post-Stroke

    Get PDF
    A novel cable-driven robotic gait training system has been tested to improve the locomotor function in individuals post stroke. Seven subjects with chronic stroke were recruited to participate in this 6 weeks robot-assisted treadmill training paradigm. A controlled assistance force was applied to the paretic leg at the ankle through a cable-driven robotic system. The force was applied from late stance to mid-swing during treadmill training. Body weight support was provided as necessary to prevent knee buckling or toe drag. Subjects were trained 3 times a week for 6 weeks. Overground gait speed, 6 minute walking distance, and balance were evaluated at pre, post 6 weeks robotic training, and at 8 weeks follow up. Significant improvements in gait speed and 6 minute walking distance were obtained following robotic treadmill training through a cable-driven robotic system. Results from this study indicate that it is feasible to improve the locomotor function in individuals post stroke through a flexible cable-driven robot
    • …
    corecore