1,287 research outputs found

    Generation of cluster states

    Full text link
    We propose two schemes for the generation of the cluster states. One is based on cavity quantum electrodynamics (QED) techniques. The scheme only requires resonant interactions between two atoms and a single-mode cavity. The interaction time is very short, which is important in view of decoherence. Furthermore, we also discuss the cavity decay and atomic spontaneous emission case. The other is based on atomic ensembles. The scheme has inherent fault tolerance function and is robust to realistic noise and imperfections. All the facilities used in our schemes are well within the current technology.Comment: Complete rewite version, adding the main results of quant-ph/0511045. 7 pages and 3 figure

    Robust nonadiabatic geometric quantum computation by dynamical correction

    Full text link
    Besides the intrinsic noise resilience property, nonadiabatic geometric phases are of the fast evolution nature, and thus can naturally be used in constructing quantum gates with excellent performance, i.e., the so-called nonadiabatic geometric quantum computation (NGQC). However, previous single-loop NGQC schemes are sensitive to the operational control error, i.e., the XX error, due to the limitations of the implementation. Here, we propose a robust scheme for NGQC combining with the dynamical correction technique, which still uses only simplified pulses, and thus being experimental friendly. We numerically show that our scheme can greatly improve the gate robustness in previous protocols, retaining the intrinsic merit of geometric phases. Furthermore, to fight against the dephasing noise, due to the ZZ error, we can incorporate the decoherence-free subspace encoding strategy. In this way, our scheme can be robust against both types of errors. Finally, we also propose how to implement the scheme with encoding on superconducting quantum circuits with experimentally demonstrated technology. Therefore, due to the intrinsic robustness, our scheme provides a promising alternation for the future scalable fault-tolerant quantum computation.Comment: 6 pages, 5 figure

    An Experimental Proposal to Test Dynamic Quantum Non-locality with Single-Atom Interferometry

    Full text link
    Quantum non-locality based on the well-known Bell inequality is of kinematic nature. A different type of quantum non-locality, the non-locality of the quantum equation of motion, is recently put forward with connection to the Aharonov-Bohm effect [Nature Phys. 6, 151 (2010)]. Evolution of the displacement operator provides an example to manifest such dynamic quantum non-locality. We propose an experiment using single-atom interferometry to test such dynamic quantum non-locality. We show how to measure evolution of the displacement operator with clod atoms in a spin-dependent optical lattice potential and discuss signature to identify dynamic quantum non-locality under a realistic experimental setting.Comment: 4 page

    Teleportation for atomic entangled state by entanglement swapping with separate measurements in cavity QED

    Full text link
    Experimentally feasible scheme for teleportation of atomic entangled state via entanglement swapping is proposed in cavity quantum electrodynamics (QED) without joint Bell-state measurement (BSM). In the teleportation processes the interaction between atoms and a single-mode nonresonant cavity with the assistance of a strong classical driving field substitute the joint measurements. The discussion of the scheme indicates that it can be realized by current technologies.Comment: 5 pages, no figur

    Time-optimal universal quantum gates on superconducting circuits

    Full text link
    Decoherence is inevitable when manipulating quantum systems. It decreases the quality of quantum manipulations and thus is one of the main obstacles for large-scale quantum computation, where high-fidelity quantum gates are needed. Generally, the longer a gate operation is, the more decoherence-induced gate infidelity will be. Therefore, how to shorten the gate time becomes an urgent problem to be solved. To this end, time-optimal control based on solving the quantum brachistochrone equation is a straightforward solution. Here, based on time-optimal control, we propose a scheme to realize universal quantum gates on superconducting qubits in a two-dimensional square lattice configuration, and the two-qubit gate fidelity approaches 99.9\%. Meanwhile, we can further accelerate the Z-axis gate considerably by adjusting the detuning of the external driving. Finally, in order to reduce the influence of the dephasing error, decoherence-free subspace encoding is also incorporated in our physical implementation. Therefore, we present a fast quantum scheme which is promising for large-scale quantum computation.Comment: v2 accepte

    Robust interface between flying and topological qubits

    Get PDF
    Hybrid architectures, consisting of conventional and topological qubits, have recently attracted much attention due to their capability in consolidating the robustness of topological qubits and the universality of conventional qubits. However, these two kinds of qubits are normally constructed in significantly different energy scales, and thus this energy mismatch is a major obstacle for their coupling that supports the exchange of quantum information between them. Here, we propose a microwave photonic quantum bus for a direct strong coupling between the topological and conventional qubits, in which the energy mismatch is compensated by the external driving field via the fractional ac Josephson effect. In the framework of tight-binding simulation and perturbation theory, we show that the energy splitting of the topological qubits in a finite length nanowire is still robust against local perturbations, which is ensured not only by topology, but also by the particle-hole symmetry. Therefore, the present scheme realizes a robust interface between the flying and topological qubits. Finally, we demonstrate that this quantum bus can also be used to generate multipartitie entangled states with the topological qubits.Comment: Accepted for publication in Scientific Report
    • …
    corecore