2,438 research outputs found

    Edge-Fault Tolerance of Hypercube-like Networks

    Full text link
    This paper considers a kind of generalized measure λs(h)\lambda_s^{(h)} of fault tolerance in a hypercube-like graph GnG_n which contain several well-known interconnection networks such as hypercubes, varietal hypercubes, twisted cubes, crossed cubes and M\"obius cubes, and proves λs(h)(Gn)=2h(n−h)\lambda_s^{(h)}(G_n)= 2^h(n-h) for any hh with 0⩽h⩽n−10\leqslant h\leqslant n-1 by the induction on nn and a new technique. This result shows that at least 2h(n−h)2^h(n-h) edges of GnG_n have to be removed to get a disconnected graph that contains no vertices of degree less than hh. Compared with previous results, this result enhances fault-tolerant ability of the above-mentioned networks theoretically

    Shares in the EMCA : the time is ripe for true no par value shares in the EU, and the 2nd directive is not an obstacle

    Get PDF
    The most interesting proposal in the draft European Model Companies Act ( EMCA) concerning shares and the focus of this Article is the recommendation to introduce true no par value shares, as they have been in use in the US for many years and were introduced in Australia, New Zealand but also Finland more recently. Contrary to what has often been assumed, the 2nd EU Company Law Directive does not preclude no par value shares. There is nothing in the wording of the Directive to suggest otherwise, and the reference in the Directive to shares without a nominal value is a reference to Belgian law, which has allowed true no par value shares in all but name since at least 1913. EU member states could therefore introduce such shares even for public companies. True no par value shares offer a far more flexible framework in case of capital increases or mergers, but since under a no par value system there is no link between par value and shareholder rights, additional disclosure about these rights might be warranted under a no par value system. Traditional par value shares offer no protection to creditors, shareholders or other stakeholders, so that their abolition should not be mourned. The threat of new share issues at an unacceptably high discount is more efficiently countered by disclosure and shareholder decision rights

    Dual Localized AtHscB Involved in Iron Sulfur Protein Biogenesis in Arabidopsis

    Get PDF
    Background: Iron-sulfur clusters are ubiquitous structures which act as prosthetic groups for numerous proteins involved in several fundamental biological processes including respiration and photosynthesis. Although simple in structure both the assembly and insertion of clusters into apoproteins requires complex biochemical pathways involving a diverse set of proteins. In yeast, the J-type chaperone Jac1 plays a key role in the biogenesis of iron sulfur clusters in mitochondria. Methodology/Principal Findings: In this study we demonstrate that AtHscB from Arabidopsis can rescue the Jac1 yeast knockout mutant suggesting a role for AtHscB in iron sulfur protein biogenesis in plants. In contrast to mitochondrial Jac1, AtHscB localizes to both mitochondria and the cytosol. AtHscB interacts with AtIscU1, an Isu-like scaffold protein involved in iron-sulfur cluster biogenesis, and through this interaction AtIscU1 is most probably retained in the cytosol. The chaperone AtHscA can functionally complement the yeast Ssq1knockout mutant and its ATPase activity is enhanced by AtHscB and AtIscU1. Interestingly, AtHscA is also localized in both mitochondria and the cytosol. Furthermore, AtHscB is highly expressed in anthers and trichomes and an AtHscB T-DNA insertion mutant shows reduced seed set, a waxless phenotype and inappropriate trichome development as well as dramatically reduced activities of the iron-sulfur enzymes aconitase and succinate dehydrogenase. Conclusions: Our data suggest that AtHscB together with AtHscA and AtIscU1 plays an important role in the biogenesis o
    • …
    corecore