10,462 research outputs found
Novel CMOS RFIC Layout Generation with Concurrent Device Placement and Fixed-Length Microstrip Routing
With advancing process technologies and booming IoT markets, millimeter-wave
CMOS RFICs have been widely developed in re- cent years. Since the performance
of CMOS RFICs is very sensi- tive to the precision of the layout, precise
placement of devices and precisely matched microstrip lengths to given values
have been a labor-intensive and time-consuming task, and thus become a major
bottleneck for time to market. This paper introduces a progressive
integer-linear-programming-based method to gener- ate high-quality RFIC layouts
satisfying very stringent routing requirements of microstrip lines, including
spacing/non-crossing rules, precise length, and bend number minimization,
within a given layout area. The resulting RFIC layouts excel in both per-
formance and area with much fewer bends compared with the simulation-tuning
based manual layout, while the layout gener- ation time is significantly
reduced from weeks to half an hour.Comment: ACM/IEEE Design Automation Conference (DAC), 201
Scene Parsing with Global Context Embedding
We present a scene parsing method that utilizes global context information
based on both the parametric and non- parametric models. Compared to previous
methods that only exploit the local relationship between objects, we train a
context network based on scene similarities to generate feature representations
for global contexts. In addition, these learned features are utilized to
generate global and spatial priors for explicit classes inference. We then
design modules to embed the feature representations and the priors into the
segmentation network as additional global context cues. We show that the
proposed method can eliminate false positives that are not compatible with the
global context representations. Experiments on both the MIT ADE20K and PASCAL
Context datasets show that the proposed method performs favorably against
existing methods.Comment: Accepted in ICCV'17. Code available at
https://github.com/hfslyc/GCPNe
Recommended from our members
Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells.
Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS(3) and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER- breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome-lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with increased rate of autophagic flux by decreasing mTOR signaling and increasing autolysosome formation
- …
