16 research outputs found

    Gram-Scale Synthesis of Catalytic Co<sub>9</sub>S<sub>8</sub> Nanocrystal Ink as a Cathode Material for Spray-Deposited, Large-Area Dye-Sensitized Solar Cells

    No full text
    We report the development of Co<sub>9</sub>S<sub>8</sub> nanocrystals as a cost-effective cathode material that can be readily combined with spraying techniques to fabricate large-area dye-sensitized solar cell (DSSC) devices and can be further connected with series or parallel cell architectures to obtain a relatively high output voltage or current. A gram-scale synthesis of Co<sub>9</sub>S<sub>8</sub> nanocrystal is carried out <i>via</i> a noninjection reaction by mixing anhydrous CoCl<sub>2</sub> with trioctylphosphine (TOP), dodecanethiol and oleylamine (OLA) at 250 °C. The Co<sub>9</sub>S<sub>8</sub> nanocrystals possess excellent catalytic ability with respect to I<sup>–</sup>/I<sub>3</sub><sup>–</sup> redox reactions. The Co<sub>9</sub>S<sub>8</sub> nanocrystals are prepared as nanoinks to fabricate uniform, crack-free Co<sub>9</sub>S<sub>8</sub> thin films on different substrates by using a spray deposition technique. These Co<sub>9</sub>S<sub>8</sub> films are used as counter electrodes assembled with dye-adsorbed TiO<sub>2</sub> photoanodes to fabricate DSSC devices having a working area of 2 cm<sup>2</sup> and an average power conversion efficiency (PCE) of 7.02 ± 0.18% under AM 1.5 solar illumination, which is comparable with the PCE of 7.2 ± 0.12% obtained using a Pt cathode. Furthermore, six 2 cm<sup>2</sup>-sized DSSC devices connected in series output an open-circuit voltage of 4.2 V that can power a wide range of electronic devices such as LED arrays and can charge commercial lithium ion batteries

    Gram-Scale Synthesis of Catalytic Co<sub>9</sub>S<sub>8</sub> Nanocrystal Ink as a Cathode Material for Spray-Deposited, Large-Area Dye-Sensitized Solar Cells

    No full text
    We report the development of Co<sub>9</sub>S<sub>8</sub> nanocrystals as a cost-effective cathode material that can be readily combined with spraying techniques to fabricate large-area dye-sensitized solar cell (DSSC) devices and can be further connected with series or parallel cell architectures to obtain a relatively high output voltage or current. A gram-scale synthesis of Co<sub>9</sub>S<sub>8</sub> nanocrystal is carried out <i>via</i> a noninjection reaction by mixing anhydrous CoCl<sub>2</sub> with trioctylphosphine (TOP), dodecanethiol and oleylamine (OLA) at 250 °C. The Co<sub>9</sub>S<sub>8</sub> nanocrystals possess excellent catalytic ability with respect to I<sup>–</sup>/I<sub>3</sub><sup>–</sup> redox reactions. The Co<sub>9</sub>S<sub>8</sub> nanocrystals are prepared as nanoinks to fabricate uniform, crack-free Co<sub>9</sub>S<sub>8</sub> thin films on different substrates by using a spray deposition technique. These Co<sub>9</sub>S<sub>8</sub> films are used as counter electrodes assembled with dye-adsorbed TiO<sub>2</sub> photoanodes to fabricate DSSC devices having a working area of 2 cm<sup>2</sup> and an average power conversion efficiency (PCE) of 7.02 ± 0.18% under AM 1.5 solar illumination, which is comparable with the PCE of 7.2 ± 0.12% obtained using a Pt cathode. Furthermore, six 2 cm<sup>2</sup>-sized DSSC devices connected in series output an open-circuit voltage of 4.2 V that can power a wide range of electronic devices such as LED arrays and can charge commercial lithium ion batteries

    Gram-Scale Synthesis of Catalytic Co<sub>9</sub>S<sub>8</sub> Nanocrystal Ink as a Cathode Material for Spray-Deposited, Large-Area Dye-Sensitized Solar Cells

    No full text
    We report the development of Co<sub>9</sub>S<sub>8</sub> nanocrystals as a cost-effective cathode material that can be readily combined with spraying techniques to fabricate large-area dye-sensitized solar cell (DSSC) devices and can be further connected with series or parallel cell architectures to obtain a relatively high output voltage or current. A gram-scale synthesis of Co<sub>9</sub>S<sub>8</sub> nanocrystal is carried out <i>via</i> a noninjection reaction by mixing anhydrous CoCl<sub>2</sub> with trioctylphosphine (TOP), dodecanethiol and oleylamine (OLA) at 250 °C. The Co<sub>9</sub>S<sub>8</sub> nanocrystals possess excellent catalytic ability with respect to I<sup>–</sup>/I<sub>3</sub><sup>–</sup> redox reactions. The Co<sub>9</sub>S<sub>8</sub> nanocrystals are prepared as nanoinks to fabricate uniform, crack-free Co<sub>9</sub>S<sub>8</sub> thin films on different substrates by using a spray deposition technique. These Co<sub>9</sub>S<sub>8</sub> films are used as counter electrodes assembled with dye-adsorbed TiO<sub>2</sub> photoanodes to fabricate DSSC devices having a working area of 2 cm<sup>2</sup> and an average power conversion efficiency (PCE) of 7.02 ± 0.18% under AM 1.5 solar illumination, which is comparable with the PCE of 7.2 ± 0.12% obtained using a Pt cathode. Furthermore, six 2 cm<sup>2</sup>-sized DSSC devices connected in series output an open-circuit voltage of 4.2 V that can power a wide range of electronic devices such as LED arrays and can charge commercial lithium ion batteries

    Gram-Scale Synthesis of Catalytic Co<sub>9</sub>S<sub>8</sub> Nanocrystal Ink as a Cathode Material for Spray-Deposited, Large-Area Dye-Sensitized Solar Cells

    No full text
    We report the development of Co<sub>9</sub>S<sub>8</sub> nanocrystals as a cost-effective cathode material that can be readily combined with spraying techniques to fabricate large-area dye-sensitized solar cell (DSSC) devices and can be further connected with series or parallel cell architectures to obtain a relatively high output voltage or current. A gram-scale synthesis of Co<sub>9</sub>S<sub>8</sub> nanocrystal is carried out <i>via</i> a noninjection reaction by mixing anhydrous CoCl<sub>2</sub> with trioctylphosphine (TOP), dodecanethiol and oleylamine (OLA) at 250 °C. The Co<sub>9</sub>S<sub>8</sub> nanocrystals possess excellent catalytic ability with respect to I<sup>–</sup>/I<sub>3</sub><sup>–</sup> redox reactions. The Co<sub>9</sub>S<sub>8</sub> nanocrystals are prepared as nanoinks to fabricate uniform, crack-free Co<sub>9</sub>S<sub>8</sub> thin films on different substrates by using a spray deposition technique. These Co<sub>9</sub>S<sub>8</sub> films are used as counter electrodes assembled with dye-adsorbed TiO<sub>2</sub> photoanodes to fabricate DSSC devices having a working area of 2 cm<sup>2</sup> and an average power conversion efficiency (PCE) of 7.02 ± 0.18% under AM 1.5 solar illumination, which is comparable with the PCE of 7.2 ± 0.12% obtained using a Pt cathode. Furthermore, six 2 cm<sup>2</sup>-sized DSSC devices connected in series output an open-circuit voltage of 4.2 V that can power a wide range of electronic devices such as LED arrays and can charge commercial lithium ion batteries

    Cholesterol polyp in gallbladder.

    No full text
    <p>Upper left, color flow imaging shows intralesional vascularity in the polyp (arrow); Upper right, the lesion (arrow) shows hyper-enhancement during the arterial phase; Lower left, the lesion (arrow) shows iso-enhancement during the venous phase.</p

    Adenomyomatosis in gallbladder.

    No full text
    <p>Upper left, conventional ultrasound shows a slight hypoechoic mass (arrow) in the gallbladder; Upper right, the lesion (arrow) shows inhomogeneous hyper-enhancement during the arterial phase; Lower left, the lesion (arrow) shows hypo-enhancement during the venous phase.</p

    Adenocarcinoma in gallbladder.

    No full text
    <p>Upper left, conventional ultrasound shows an isoechoic mass (arrow) and a stone (arrowhead) in the gallbladder; Upper right, color flow imaging shows intralesional vascularity (arrow); Lower left, the lesion (arrow) shows hyper-enhancement during the arterial phase and the infiltration (arrowhead) to the adjacent liver is seen; Lower right, the lesion (arrow) shows hypo-enhancement during the venous phase and the infiltration (arrowhead) to the adjacent liver is seen.</p

    Enhancement features of the gallbladder diseases on contrast-enhanced ultrasound.

    No full text
    *<p>Comparisons between malignant and benign gallbladder diseases. <sup>#</sup> n = 129 after excluding the 12 lesions of biliary sludge in the categories of intralesional vessel, enhancement pattern and enhancement extent. NA, not applicable.</p
    corecore