1,523 research outputs found

    MULTISCALE KERNELS FOR DIFFEOMORPHIC BRAIN IMAGE AND SURFACE MATCHING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    [(E)-2-(3,5-Dibromo-2-oxidobenzyl­ideneamino)-3-(4-hydroxy­phen­yl)propionato-κ3 O,N,O′](dimethyl­formamide-κO)copper(II)

    Get PDF
    In the title complex, [Cu(C16H11Br2NO4)(C3H7NO)]2, there are two unique mol­ecules in the asymmetric unit. Each CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L 2− [LH2 = (E)-2-(3,5-dibromo-2-hydroxy­benzyl­idene­amino)-2-(4-hydroxy­phenyl)acetic acid] and the O atom of a dimethyl­formamide mol­ecule to give a slightly distorted square-planar geometry. The two unique mol­ecules form a dimer through weak C—H⋯O hydrogen bonds. In the dimer, the Cu⋯Cu distance is 3.712 (1) Å. In the crystal structure, mol­ecules form a one-dimensional chain through C—H⋯O hydrogen bonds. These are further aggregated into a three-dimensional network by O—H⋯O and C—H⋯O hydrogen bonds

    Strong, Self-Healable, and Recyclable Visible-Light-Responsive Hydrogel Actuators

    Get PDF
    The most pressing challenges for light-driven hydrogel actuators include reliance on UV light, slow response, poor mechanical properties, and limited functionalities. Now, a supramolecular design strategy is used to address these issues. Key is the use of a benzylimine-functionalized anthracene group, which red-shifts the absorption into the visible region and also stabilizes the supramolecular network through π-π interactions. Acid-ether hydrogen bonds are incorporated for energy dissipation under mechanical deformation and maintaining hydrophilicity of the network. This double-crosslinked supramolecular hydrogel developed via a simple synthesis exhibits a unique combination of high strength, rapid self-healing, and fast visible-light-driven shape morphing both in the wet and dry state. As all of the interactions are dynamic, the design enables the structures to be recycled and reprogrammed into different 3D objects.Funding is gratefully acknowledged from the Australian Research Council(DP180103918),and the ANU Futures Scheme. Z.J.would like to acknowledge funding of ANU Early Career Researchers(ECR)Travel Grant(R.46850.4656)

    Effects of waterlogging and elevated salinity on the allocation of photosynthetic carbon in estuarine tidal marsh: a mesocosm experiment

    Get PDF
    Embargo until September 10, 2023Background and aim Coastal marshes and wetlands hosting blue carbon ecosystems have shown vulnerability to sea-level rise (SLR) and its consequent effects. In this study, we explored the effects of waterlogging and elevated salinity on the accumulation and allocation of photosynthetic carbon (C) in a widely distributed species in marsh lands. Methods The plant–soil mesocosms of Phragmites australis were grown under waterlogging and elevated salinity conditions to investigate the responses of photosynthetic C allocation in different C pools (plant organs and soils) based on 13CO2 pulse-labeling technology. Results Both waterlogging and elevated salinity treatments decreased photosynthetic C fixation. The hydrological treatments also reduced 13C transport to the plant organs of P. australis while significantly increased 13C allocation percentage in roots. Waterlogging and low salinity had no significant effects on 13C allocation to rhizosphere soils, while high salinity (15 and 30 ppt) significantly reduced 13C allocation to soils, indicating a decreased root C export in saline environments. Waterlogging enhanced the effects of salinity on the 13C allocation pattern, particularly during the late growing season. The responses of flooding and elevated salinity on C allocation in plant organs and rhizosphere soils can be related to changes in nutrient, ionic concentrations and microbial biomass. Conclusion The adaptation strategy of P. australis led to increased C allocation in belowground organs under changed hydrology. Expected global SLR projection might decrease total C stocks in P. australis and alter the C allocation pattern in marsh plant-soil systems, due to amplified effects of flooding and elevated salinities.acceptedVersio

    Inverse Geometry Design of Radiative Enclosures Using Particle Swarm Optimization Algorithms

    Get PDF
    Three different Particle Swarm Optimization (PSO) algorithms—standard PSO, stochastic PSO (SPSO) and differential evolution PSO (DEPSO)—are applied to solve the inverse geometry design problems of radiative enclosures. The design purpose is to satisfy a uniform distribution of radiative heat flux on the designed surface. The design surface is discretized into a series of control points, the PSO algorithms are used to optimize the locations of these points and the Akima cubic interpolation is utilized to approximate the changing boundary shape. The retrieval results show that PSO algorithms can be successfully applied to solve inverse geometry design problems and SPSO achieves the best performance on computational time. The influences of the number of control points and the radiative properties of the media on the retrieval geometry design results are also investigated

    [(2S)-2-(3,5-Dichloro-2-oxidobenzyl­ideneamino)-3-(4-hydroxy­phen­yl)propionato-κ3 O,N,O′](dimethyl­formamide-κO)copper(II)

    Get PDF
    In the title complex, [Cu(C16H11Cl2NO4)(C3H7NO)] , the CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L 2− {LH2 = (2S)-[2-(3,5-dichloro-2-hydroxy­benzyl­idene)­imino]-3-(4-hydroxy­phenyl)propionic acid} and one O atom from a dimethyl­formamide mol­ecule, resulting in a slightly distorted square-planar geometry. The structure forms a one-dimensional chain through weak coordination bonds [Cu⋯O 3.080 (1), Cu⋯Cl 3.269 (1) Å] and a three-dimensional network through O—H⋯O and C—H⋯O hydrogen bonds

    Extrusion 3D Printing of Polymeric Materials with Advanced Properties

    Get PDF
    3D printing is a rapidly growing technology that has an enormous potential to impact a wide range of industries such as engineering, art, education, medicine, and aerospace. The flexibility in design provided by this technique offers many opportunities for manufacturing sophisticated 3D devices. The most widely utilized method is an extrusion-based solid-freeform fabrication approach, which is an extremely attractive additive manufacturing technology in both academic and industrial research communities. This method is versatile, with the ability to print a range of dimensions, multimaterial, and multifunctional 3D structures. It is also a very affordable technique in prototyping. However, the lack of variety in printable polymers with advanced material properties becomes the main bottleneck in further development of this technology. Herein, a comprehensive review is provided, focusing on material design strategies to achieve or enhance the 3D printability of a range of polymers including thermoplastics, thermosets, hydrogels, and other polymers by extrusion techniques. Moreover, diverse advanced properties exhibited by such printed polymers, such as mechanical strength, conductance, self-healing, as well as other integrated properties are highlighted. Lastly, the stimuli responsiveness of the 3D printed polymeric materials including shape morphing, degradability, and color changing is also discussed

    Production of structured triacylglycerols via enzymatic interesterification of medium-chain triacylglycerol and soybean oil using a pilot-scale solvent-free packed bed reactor

    Get PDF
    Oils rich in medium- and long-chain triacylglycerols (MLCT) serve as functional oils to help reduce body fat accumulation and weight gain. However, most of the MLCT-rich products on the market are physical blends of medium- and long-chain triacylglycerols (MCT and LCT, respectively) that are not structured triacylglycerols (TAG). In this study, an efficient pilot-scale packed bed reactor (PBR) of immobilized lipase from Thermomyces lanuginosus (Lipozyme® TL IM, Novozymes, Bagsvaerd, Denmark) was employed for producing structured MLCT via 1,3-specific interesterification of TAG enriched in caprylic and capric acyl groups and soybean oil (SBO). The PBR was operated under continuous recirculation mode in the absence of solvent. Optimal reaction conditions were determined to be: caprylic/capric TAG: SBO ratio (45:55 w/w), reaction temperature (75 °C) and residence time (16.0 min) on MLCT production were studied. When employing a pilot-scale PBR (100 kg day−1) under optimal conditions, a product containing 76.61 wt% MLCT was produced. Lipozyme TL IM was reused for 25 successive batch reactions (125 kg substrates) with no significant reduction in catalytic efficiency. The light yellow MLCT-enriched product had a high level of saturated fatty acids (SFA, 82.74 wt%) in its sn-2 position as a result of the enzyme's 1,3-positional specificity. One-stage molecular distillation and methanol extraction were used to remove the free fatty acids, mono-, and diacylglycerols generated from hydrolysis. With distillation temperature of 150 °C and oil-to-methanol ratio of 1:3 v/v, MLCT content was further increased to 80.07 wt%. The enzymatic PBR was therefore effective in producing structured MLCT at a pilot-scale under solvent-free conditions

    Hotspots and frontiers of genetic research on pediatric cataracts from 2013 to 2022: a scientometric analysis

    Get PDF
    AIM: To explore the hotspots and frontiers of genetic research on pediatric cataracts. METHODS: Global publications from 2013 to 2022 related to genes in pediatric cataracts were extracted from the Web of Science Core Collection, and were analyzed in terms of the publication counts, countries, journals, authors, keywords, cited references, subject categories, and the underlying hotspots and frontiers. RESULTS: Totally 699 publications were included in the final analysis. The predominant actors were identified, with China (n=240) and PLoS One (n=33) being the most productive country and journal respectively. The research hotspots extracted from keywords were crystallin gene mutations, pathogenicity evaluation, phenotypes of ocular and neurodevelopmental abnormalities, genes encoding membrane proteins, and diagnosis of multisystemic disorders. The co-cited articles formed 10 clusters of research topics, including FYCO1 (56 items), mutation screening (43 items), gap junction (29 items), the Warburg Micro syndrome (29 items), ephrin-A5 (28 items), novel mutation (24 items), eye development and function (22 items), cholestanol (7 items), OCRL (6 items), and pathogenicity prediction (3 items). The research frontiers were FYCO1, ephrin-A5, and cholestanol. Cell biology showed the strongest bridging effects among different disciplines in the field (betweenness centrality=0.44). CONCLUSION: With the progress in next-generation sequencing and multidisciplinary collaboration, genetic research on pediatric cataracts broadens the knowledge scope of the crystalline lens, as well as other organs and systems, shedding light on the molecular mechanisms of systemic diseases. Cell biology may integrate multidisciplinary content to address cutting-edge issues in the field

    3D and 4D printable dual cross-linked polymers with high strength and humidity-triggered reversible actuation

    Get PDF
    It is highly desirable but challenging to develop humidity-responsive polymers with simultaneously improved mechanical properties and 3D printability, while still displaying fast, reversible and complex shape transformations. Herein, a facile and scalable supramolecular strategy of fabricating a new class of humidity-responsive polymers is proposed to address this issue. The multiple hydrogen-bond cross-linked network is used to provide high humidity sensitivity and shear-dependent rheological behavior. Further introduction of metal coordination bonds can not only improve mechanical strength and creep resistance, but also promote reversible humidity-driven actuation and generate viscoelastic hydrogel inks. This humidity-responsive polymer with these unique combined attributes enables the potential to fabricate diverse functional materials from artificial muscles, smart electronic and catalytic devices. Moreover, diverse arbitrary architectures with spatial thickness contrast exhibiting sophisticated biomimetic 4D printing process were manufactured by direct ink writing (DIW). This material and method not only provides a general route to tune versatile functionalities and intelligent responsiveness of polymeric actuators at the molecular level, but also provides new opportunities for building exceptional 4D printed products.Funding is gratefully acknowledged from the Australian Research Council (DP180103918), and the ANU Futures Schem
    corecore