30,755 research outputs found

    Serving foreign markets by local production : strategic alternatives

    Get PDF
    Includes bibliographical references (p. 19-20)

    Signal transmission in a Y-shaped one-way chain

    Full text link
    It has been found that noise plays a key role to improve signal transmission in a one-way chain of bistable systems [Zhang et al., Phys. Rev. E 58, 2952 (1998)]. We here show that the signal transmission can be sharply improved without the aid of noise, if the one-way chain with a single source node is changed with two source nodes becoming a Y-shaped one-way chain. We further reveal that the enhanced signal transmission in the Y-shaped one-way chain is regulated by coupling strength, and that it is robust to noise perturbation and input signal irregularity. We finally analyze the mechanism of the enhanced signal transmission by the Y-shaped structure.Comment: 8 pages, 10 figure

    Variational wave functions of a vortex in cyclotron motion

    Full text link
    In two dimensions the microscopic theory, which provides a basis for the naive analogy between a quantized vortex in a superfluid and an electron in an uniform magnetic field, is presented. A one-to-one correspondence between the rotational states of a vortex in a cylinder and the cyclotron states of an electron in the central gauge is found. Like the Landau levels of an electron, the energy levels of a vortex are highly degenerate. However, the gap between two adjacent energy levels does not only depend on the quantized circulation, but also increases with the energy, and scales with the size of the vortex.Comment: LaTeX, 4 pages, 2 EPS figures, To appear in ``Series on Advances in Quantum Many-Body Theory'' ed. by R.F. Bishop, C.E. Campbell, J.W. Clark and S. Fantoni (World Scientific, 2000

    Strategic implications of critical fixities under continuous technological change

    Get PDF
    Includes bibliographical references (p. 27-28)

    Suppressing epidemic spreading by risk-averse migration in dynamical networks

    Full text link
    In this paper, we study the interplay between individual behaviors and epidemic spreading in a dynamical network. We distribute agents on a square-shaped region with periodic boundary conditions. Every agent is regarded as a node of the network and a wireless link is established between two agents if their geographical distance is less than a certain radius. At each time, every agent assesses the epidemic situation and make decisions on whether it should stay in or leave its current place. An agent will leave its current place with a speed if the number of infected neighbors reaches or exceeds a critical value EE. Owing to the movement of agents, the network's structure is dynamical. Interestingly, we find that there exists an optimal value of EE leading to the maximum epidemic threshold. This means that epidemic spreading can be effectively controlled by risk-averse migration. Besides, we find that the epidemic threshold increases as the recovering rate increases, decreases as the contact radius increases, and is maximized by an optimal moving speed. Our findings offer a deeper understanding of epidemic spreading in dynamical networks.Comment: 7 pages, 6 figure
    corecore