18 research outputs found

    Activity in the fronto-parietal multiple-demand network is robustly associated with individual differences in working memory and fluid intelligence.

    Get PDF
    Numerous brain lesion and fMRI studies have linked individual differences in executive abilities and fluid intelligence to brain regions of the fronto-parietal "multiple-demand" (MD) network. Yet, fMRI studies have yielded conflicting evidence as to whether better executive abilities are associated with stronger or weaker MD activations and whether this relationship is restricted to the MD network. Here, in a large-sample (n = 216) fMRI investigation, we found that stronger activity in MD regions - functionally defined in individual participants - was robustly associated with more accurate and faster responses on a spatial working memory task performed in the scanner, as well as fluid intelligence measured independently (n = 114). In line with some prior claims about a relationship between language and fluid intelligence, we also found a weak association between activity in the brain regions of the left fronto-temporal language network during an independent passive reading task, and performance on the working memory task. However, controlling for the level of MD activity abolished this relationship, whereas the MD activity-behavior association remained highly reliable after controlling for the level of activity in the language network. Finally, we demonstrate how unreliable MD activity measures, coupled with small sample sizes, could falsely lead to the opposite, negative, association that has been reported in some prior studies. Taken together, these results demonstrate that a core component of individual differences variance in executive abilities and fluid intelligence is selectively and robustly positively associated with the level of activity in the MD network, a result that aligns well with lesion studies

    The language network is not engaged in object categorization

    Get PDF
    The relationship between language and thought is the subject of long-standing debate. One claim states that language facilitates categorization of objects based on a certain feature (e.g. color) through the use of category labels that reduce interference from other, irrelevant features. Therefore, language impairment is expected to affect categorization of items grouped by a single feature (low-dimensional categories, e.g. "Yellow Things") more than categorization of items that share many features (high-dimensional categories, e.g. "Animals"). To test this account, we conducted two behavioral studies with individuals with aphasia and an fMRI experiment with healthy adults. The aphasia studies showed that selective low-dimensional categorization impairment was present in some, but not all, individuals with severe anomia and was not characteristic of aphasia in general. fMRI results revealed little activity in language-responsive brain regions during both low- and high-dimensional categorization; instead, categorization recruited the domain-general multiple-demand network (involved in wide-ranging cognitive tasks). Combined, results demonstrate that the language system is not implicated in object categorization. Instead, selective low-dimensional categorization impairment might be caused by damage to brain regions responsible for cognitive control. Our work adds to the growing evidence of the dissociation between the language system and many cognitive tasks in adults

    The language network is not engaged in object categorization

    Get PDF
    The relationship between language and thought is the subject of long-standing debate. One claim states that language facilitates categorization of objects based on a certain feature (e.g. color) through the use of category labels that reduce interference from other, irrelevant features. Therefore, language impairment is expected to affect categorization of items grouped by a single feature (low-dimensional categories, e.g. “Yellow Things”) more than categorization of items that share many features (high-dimensional categories, e.g. “Animals”). To test this account, we conducted two behavioral studies with individuals with aphasia and an fMRI experiment with healthy adults. The aphasia studies showed that selective low-dimensional categorization impairment was present in some, but not all, individuals with severe anomia and was not characteristic of aphasia in general. fMRI results revealed little activity in language-responsive brain regions during both low- and high-dimensional categorization; instead, categorization recruited the domain-general multiple-demand network (involved in wide-ranging cognitive tasks). Combined, results demonstrate that the language system is not implicated in object categorization. Instead, selective low-dimensional categorization impairment might be caused by damage to brain regions responsible for cognitive control. Our work adds to the growing evidence of the dissociation between the language system and many cognitive tasks in adults

    Activity in the fronto-parietal multiple-demand network is robustly associated with individual differences in working memory and fluid intelligence

    No full text
    © 2020 Elsevier Ltd Numerous brain lesion and fMRI studies have linked individual differences in executive abilities and fluid intelligence to brain regions of the fronto-parietal “multiple-demand” (MD) network. Yet, fMRI studies have yielded conflicting evidence as to whether better executive abilities are associated with stronger or weaker MD activations and whether this relationship is restricted to the MD network. Here, in a large-sample (n = 216) fMRI investigation, we found that stronger activity in MD regions – functionally defined in individual participants – was robustly associated with more accurate and faster responses on a spatial working memory task performed in the scanner, as well as fluid intelligence measured independently (n = 114). In line with some prior claims about a relationship between language and fluid intelligence, we also found a weak association between activity in the brain regions of the left fronto-temporal language network during an independent passive reading task, and performance on the working memory task. However, controlling for the level of MD activity abolished this relationship, whereas the MD activity-behavior association remained highly reliable after controlling for the level of activity in the language network. Finally, we demonstrate how unreliable MD activity measures, coupled with small sample sizes, could falsely lead to the opposite, negative, association that has been reported in some prior studies. Taken together, these results demonstrate that a core component of individual differences variance in executive abilities and fluid intelligence is selectively and robustly positively associated with the level of activity in the MD network, a result that aligns well with lesion studies

    Lack of selectivity for syntax relative to word meanings throughout the language network

    No full text
    © 2020 Elsevier B.V. To understand what you are reading now, your mind retrieves the meanings of words and constructions from a linguistic knowledge store (lexico-semantic processing) and identifies the relationships among them to construct a complex meaning (syntactic or combinatorial processing). Do these two sets of processes rely on distinct, specialized mechanisms or, rather, share a common pool of resources? Linguistic theorizing, empirical evidence from language acquisition and processing, and computational modeling have jointly painted a picture whereby lexico-semantic and syntactic processing are deeply inter-connected and perhaps not separable. In contrast, many current proposals of the neural architecture of language continue to endorse a view whereby certain brain regions selectively support syntactic/combinatorial processing, although the locus of such “syntactic hub”, and its nature, vary across proposals. Here, we searched for selectivity for syntactic over lexico-semantic processing using a powerful individual-subjects fMRI approach across three sentence comprehension paradigms that have been used in prior work to argue for such selectivity: responses to lexico-semantic vs. morpho-syntactic violations (Experiment 1); recovery from neural suppression across pairs of sentences differing in only lexical items vs. only syntactic structure (Experiment 2); and same/different meaning judgments on such sentence pairs (Experiment 3). Across experiments, both lexico-semantic and syntactic conditions elicited robust responses throughout the left fronto-temporal language network. Critically, however, no regions were more strongly engaged by syntactic than lexico-semantic processing, although some regions showed the opposite pattern. Thus, contra many current proposals of the neural architecture of language, syntactic/combinatorial processing is not separable from lexico-semantic processing at the level of brain regions—or even voxel subsets—within the language network, in line with strong integration between these two processes that has been consistently observed in behavioral and computational language research. The results further suggest that the language network may be generally more strongly concerned with meaning than syntactic form, in line with the primary function of language—to share meanings across minds.NIH (Awards R00-HD057522, R01-DC016607, R01-DC016950

    The Small and Efficient Language Network of Polyglots and Hyper-polyglots

    No full text
    © 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected]. Acquiring a foreign language is challenging for many adults. Yet certain individuals choose to acquire sometimes dozens of languages and often just for fun. Is there something special about the minds and brains of such polyglots? Using robust individual-level markers of language activity, measured with fMRI, we compared native language processing in polyglots versus matched controls. Polyglots (n = 17, including nine "hyper-polyglots"with proficiency in 10-55 languages) used fewer neural resources to process language: Their activations were smaller in both magnitude and extent. This difference was spatially and functionally selective: The groups were similar in their activation of two other brain networks - the multiple demand network and the default mode network. We hypothesize that the activation reduction in the language network is experientially driven, such that the acquisition and use of multiple languages makes language processing generally more efficient. However, genetic and longitudinal studies will be critical to distinguish this hypothesis from the one whereby polyglots' brains already differ at birth or early in development. This initial characterization of polyglots' language network opens the door to future investigations of the cognitive and neural architecture of individuals who gain mastery of multiple languages, including changes in this architecture with linguistic experiences.NIH (Awards R00-HD057522, R01- DC016607 and R01-DC016950

    The Language Network is Recruited but Not Required for Nonverbal Event Semantics

    Get PDF
    Abstract The ability to combine individual concepts of objects, properties, and actions into complex representations of the world is often associated with language. Yet combinatorial event-level representations can also be constructed from nonverbal input, such as visual scenes. Here, we test whether the language network in the human brain is involved in and necessary for semantic processing of events presented nonverbally. In Experiment 1, we scanned participants with fMRI while they performed a semantic plausibility judgment task versus a difficult perceptual control task on sentences and line drawings that describe/depict simple agent–patient interactions. We found that the language network responded robustly during the semantic task performed on both sentences and pictures (although its response to sentences was stronger). Thus, language regions in healthy adults are engaged during a semantic task performed on pictorial depictions of events. But is this engagement necessary? In Experiment 2, we tested two individuals with global aphasia, who have sustained massive damage to perisylvian language areas and display severe language difficulties, against a group of age-matched control participants. Individuals with aphasia were severely impaired on the task of matching sentences to pictures. However, they performed close to controls in assessing the plausibility of pictorial depictions of agent–patient interactions. Overall, our results indicate that the left frontotemporal language network is recruited but not necessary for semantic processing of nonverbally presented events.</jats:p

    Frontal language areas do not emerge in the absence of temporal language areas: A case study of an individual born without a left temporal lobe

    No full text
    Language processing relies on a left-lateralized fronto-temporal brain network. How this network emerges ontogenetically remains debated. We asked whether frontal language areas emerge in the absence of temporal language areas through a 'deep-data' investigation of an individual (EG) born without her left temporal lobe. Using fMRI methods that have been validated to elicit reliable individual-level responses, we find that-as expected for early left-hemisphere damage-EG has a fully functional language network in her right hemisphere (comparable to the LH network in n = 145 controls) and intact linguistic abilities. However, we detect no response to language in EG's left frontal lobe (replicated across two sessions, 3 years apart). Another network-the multiple demand network-is robustly present in frontal lobes bilaterally, suggesting that EG's left frontal cortex can support non-linguistic cognition. The existence of temporal language areas therefore appears to be a prerequisite for the emergence of the frontal language areas

    Differential tracking of linguistic vs. mental state content in naturalistic stimuli by language and Theory of Mind (ToM) brain networks

    No full text
    AbstractLanguage and social cognition, especially the ability to reason about mental states, known as theory of mind (ToM), are deeply related in development and everyday use. However, whether these cognitive faculties rely on distinct, overlapping, or the same mechanisms remains debated. Some evidence suggests that, by adulthood, language and ToM draw on largely distinct—though plausibly interacting—cortical networks. However, the broad topography of these networks is similar, and some have emphasized the importance of social content / communicative intent in the linguistic signal for eliciting responses in the language areas. Here, we combine the power of individual-subject functional localization with the naturalistic-cognition inter-subject correlation approach to illuminate the language–ToM relationship. Using functional magnetic resonance imaging (fMRI), we recorded neural activity as participants (n = 43) listened to stories and dialogues with mental state content (+linguistic, +ToM), viewed silent animations and live action films with mental state content but no language (−linguistic, +ToM), or listened to an expository text (+linguistic, −ToM). The ToM network robustly tracked stimuli rich in mental state information regardless of whether mental states were conveyed linguistically or non-linguistically, while tracking a +linguistic / −ToM stimulus only weakly. In contrast, the language network tracked linguistic stimuli more strongly than (a) non-linguistic stimuli, and than (b) the ToM network, and showed reliable tracking even for the linguistic condition devoid of mental state content. These findings suggest that in spite of their indisputably close links, language and ToM dissociate robustly in their neural substrates—and thus plausibly cognitive mechanisms—including during the processing of rich naturalistic materials.</jats:p

    An investigation across 45 languages and 12 language families reveals a universal language network

    No full text
    To understand the architecture of human language, it is critical to examine diverse languages; however, most cognitive neuroscience research has focused on only a handful of primarily Indo-European languages. Here we report an investigation of the fronto-temporo-parietal language network across 45 languages and establish the robustness to cross-linguistic variation of its topography and key functional properties, including left-lateralization, strong functional integration among its brain regions and functional selectivity for language processing
    corecore