2,602 research outputs found

    Guidelines for developing vectorizable computer programs

    Get PDF
    Some fundamental principles for developing computer programs which are compatible with array-oriented computers are presented. The emphasis is on basic techniques for structuring computer codes which are applicable in FORTRAN and do not require a special programming language or exact a significant penalty on a scalar computer. Researchers who are using numerical techniques to solve problems in engineering can apply these basic principles and thus develop transportable computer programs (in FORTRAN) which contain much vectorizable code. The vector architecture of the ASC is discussed so that the requirements of array processing can be better appreciated. The "vectorization" of a finite-difference viscous shock-layer code is used as an example to illustrate the benefits and some of the difficulties involved. Increases in computing speed with vectorization are illustrated with results from the viscous shock-layer code and from a finite-element shock tube code. The applicability of these principles was substantiated through running programs on other computers with array-associated computing characteristics, such as the Hewlett-Packard (H-P) 1000-F

    Computer user's guide for a chemically reacting viscous shock-layer program

    Get PDF
    A description is given of the computer code for predicting viscous shock-layer flows over nonanalytic blunt bodies (Program VISLNABB) for hypersonic, low Reynolds number flows. Four specific and one general body geometries are considered. In addition to sphere-cones, cylinder wedges and geometries defined in tabular form, options for hyperboloids and paraboloids are included. Details of the theory and results are included in a separate engineering report. The program, subroutines, variables in common, and input and output data are described. Listings of the program code, output data for a sample case, and the input data for this sample case are included

    Hypersonic ionizing air viscous shock-layer flows over nonanalytic blunt bodies

    Get PDF
    The equations which govern the viscous shock-layer flow are presented and the method by which the equations are solved is discussed. The predictions of the present finite-difference method are compared with other numerical predictions as well as with experimental data. The principal emphasis is placed on predictions of the viscous flowfield for the windward plane of symmetry of the space shuttle orbiter and other axisymmetric bodies which approximate the shuttle orbiter geometry. Experimental data on two slender sphere-cones at hypersonic conditions are also considered. The present predictions agreed well with experimental data and with the past predictions. Substantial differences were found between present predictions and more approximate methods

    A finite difference method for predicting supersonic turbulent boundary layer flows with tangential slot injection

    Get PDF
    An implicit finite difference method has been applied to tangential slot injection into supersonic turbulent boundary layer flows. In addition, the effects induced by the interaction between the boundary layer displacement thickness and the external pressure field are considered. In the present method, three different eddy viscosity models have been used to specify the turbulent momentum exchange. One model depends on the species concentration profile and the species conservation equation has been included in the system of governing partial differential equations. Results are compared with experimental data at stream Mach numbers of 2.4 and 6.0 and with results of another finite difference method. Good agreement was generally obtained for the reduction of wall skin friction with slot injection and with experimental Mach number and pitot pressure profiles. Calculations with the effects of pressure interaction included showed these effects to be smaller than effects of changing eddy viscosity models

    On studies in the field of space flight and guidance theory progress report no. 4 <20 dec. 1962 - 18 jul. 1963<

    Get PDF
    Trajectories, orbital calculations, and adaptive guidanc

    THEORY OF SPACE FLIGHT AND ADAPTIVE GUIDANCE

    Get PDF
    Theory of space flight and adaptive guidanc

    Optimal trajectory coordinate-multiplier systems with constant of the motion components.

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76066/1/AIAA-1969-907-208.pd

    The anti-emetic potential of the 5-hydroxytryptamine3 receptor antagonist BRL 43694.

    Get PDF
    In ferrets, the selective 5-hydroxytryptamine (5-HT) 5-HT3 receptor antagonist BRL 43694 given as a single injection (0.05-0.5 mg kg-1 i.v.) before cisplatin, or by divided dose (2 x 0.005-2 x 0.5 mg kg-1 i.v.) before and after cisplatin dramatically reduced or abolished the severe cisplatin-induced vomiting. BRL 43694 also substantially reduced the vomiting induced by cyclophosphamide:doxorubicin, and prevented the trimelamol-induced emesis. The severe emesis caused by whole body exposure to X-irradiation was prevented by intravenous or oral BRL 43694. A single i.v. dose of BRL 43694 given during an emetic episode or within the peak emetic period, abolished the vomiting induced by the cytotoxic drugs and by X-irradiation, usually within 30 s. Where the induction of emesis was prevented or subsequently abolished by BRL 43694, the associated behaviour (subjectively assessed as nausea) was also absent or greatly attenuated. BRL 43694 (0.1 mg kg-1 i.v.) did not affect the emesis evoked in dogs by the dopamine agonist apomorphine. The potent anti-emetic activity of BRL 43694 is discussed in terms of potential clinical use, and of the fundamental role that 5-HT3 receptors may play in the mechanisms of nausea and vomiting
    corecore