8 research outputs found

    Facial anatomy revisited:Anatomical facts and their clinical implications

    Get PDF
    The work presented in this thesis has significantly improved the understanding of facial anatomy for the next generation by proposing a non-contradictory explanation of the layered anatomy of the face. In this explanation, two main types of fasciae exist: deep fascia (Layer 5) and superficial fascia (Layer 2). In some areas, a layer of facial mimetic muscles or aponeuroses (superficial temporal fascia, galea, …) is situated between the superficial fascia and the deep fascia (Layer 3). However, this is not a uniform layer as was previously hypothesized with the concept of the “Superficial Musculo-Aponeurotic System” (SMAS), and where there is no Layer 3, the deep fascia (Layer 5) and superficial fascia (Layer 2) attach to each other.The deep fascia (Layer 5), the deepest layer, is a fibrofatty connective tissue layer that fills the space between the superficial fascia and deeper structures, including muscles, salivary glands, and vascular structures, which are all invested by this layer. It retains the superficial tissues of the face while providing stability in one direction and mobility in another. The facial nerve branches travel their entire extracranial trajectory within this fascia until they innervate their target muscles. The deep plane (Level 4), traditionally described as a separate layer (“Layer 4”), is a potential dissection plane within the deep fascia (Layer 5). This dissection plane can be superficial within the deep fascia such as in the lower face and neck, or deep within the deep fascia such as in the temple and forehead, which secondarily determines the nerves being visualized in the roof or the floor of the dissection. The depth of the dissection, as well as its extent, determines where the facial nerve branches are crossed and are at risk.The Superficial Musculo-Aponeurotic System (SMAS) is not an anatomical entity but a surgically created compound flap consisting of the deep part of the subcutaneous fat (Layer 2), mimetic muscle where present (Layer 3), and a thin layer of deep fascia (Layer 5).The subcutaneous fat (Layer 2) has a highly distinct architecture with connective tissue septae that are oriented largely perpendicular to the skin. This layer has specific anatomical features defining the nasolabial fold and the jowl.The platysma (Layer 3) is connected to the skin and through the deeper structures by retinacula fibers in the superficial fascia (Layer 2) and the deep fascia (Layer 5). The platysma and depressor labii inferioris are essentially continuous, being two parts of the same muscle, separated by their attachment to the mandible (“mandibular ligament”). Therefore, the cervical branches contribute significantly to the innervation of the lower lip.This unified understanding of facial anatomy provides a basis for improved surgical techniques to obtain more effective and longer-lasting surgical solutions for facial rejuvenation. This improved understanding may also help to mitigate the trend in which less experienced surgeons steer away from long-lasting surgical solutions toward non-surgical procedures which have significant limitations

    Lifting the Anterior Midcheek and Nasolabial Fold:Introduction to the Melo Fat Pad Anatomy and Its Role in Longevity and Recurrence

    Get PDF
    BACKGROUND: A limitation of current facelift techniques is the early postoperative reappearance of anterior midcheek laxity associated with recurrence of the nasolabial fold (NLF).OBJECTIVES: This study was undertaken to examine the regional anatomy of the anterior midcheek and NLF with a focus on explaining the early recurrence phenomenon and to explore the possibility of alternative surgical methods that prolong NLF correction.METHODS: Fifty cadaver heads were studied (16 embalmed, 34 fresh, mean age 75 years). Following preliminary dissections and macro-sectioning, a series of standardized layered dissections were performed, complemented by histology, sheet plastination and micro-CT. Mechanical testing of the melo fat pad (MFP) and skin was performed to gain insight on which structure is responsible for transmission of the lifting tension in a composite facelift procedure.RESULTS: Anatomical dissections, sheet plastination and micro-CT demonstrated the three-dimensional architecture and borders of the MFP. Histology of a lifted midcheek demonstrated that a composite MFP lift causes a change in connective tissue organization from a hanging-down pattern into a pulled upward pattern suggesting traction on the skin. Mechanical testing confirmed that, in a composite lift, despite the sutures being placed directly into the deep aspect of the MFP, the lifting tension distal to the suture is transmitted through the skin and not through the MFP.CONCLUSIONS: As a composite midcheek lift is usually performed, it is the skin and not the MFP itself, that bears the load of the non-dissected tissues distal to the lifting suture. For this reason, early recurrence of the NLF occurs following skin relaxation in the postoperative period. Accordingly, specific surgical procedures for remodeling the MFP should be explored, possibly in combination with volume restoration of the fat and bone, for more lasting improvement of the NLF.</p

    The Surgical Anatomy of the Jowl and the Mandibular Ligament Reassessed

    Get PDF
    Introduction A visible jowl is a reason patients consider lower facial rejuvenation surgery. The anatomical changes that lead to formation of the jowl remain unclear. The aim of this study was to elucidate the anatomy of the jowl, the mandibular ligament and the labiomandibular crease, and their relationship with the marginal mandibular branch of the facial nerve. Materials and Methods Forty-nine cadaver heads were studied (16 embalmed, 33 fresh, mean age 75 years). Following preliminary dissections and macro-sectioning, a series of standardized layered dissections were performed, complemented by histology, sheet plastination and micro-CT. Results The jowl forms in the subcutaneous layer where it overlies the posterior part of the mandibular ligament. The mandibular ligament proper exists only in the deep, sub-platysma plane, formed by the combined muscular attachment to the mandible of the specific lower lip depressor muscles and the platysma. The mandibular ligament does not have a definitive subcutaneous component. The labiomandibular crease inferior to the oral commissure marks the posterior extent of the fixed dermal attachment of depressor anguli oris. Conclusion Jowls develop as a consequence of aging changes on the functional adaptions of the mouth in humans. To accommodate wide jaw opening with a narrowed commissure requires hypermobility of the tissues overlying the mandible immediately lateral to the level of the oral commissure. This hypermobility over the mandibular attachment of the lower lip depressor muscles occurs entirely in the subcutaneous layer to allow the mandible to move largely independent from the skin. The short, elastic subcutaneous connective tissue, which allows this exceptional mobility without laxity in youth, lengthens with aging, resulting in laxity. The development of subcutaneous and dermal redundancy constitutes the jowl in this location

    Levobupivacaine Consumption in Automated Intermittent Bolus in Ultrasound Guided Subparaneural Sciatic Nerve Catheters: A Prospective Double-Blind Randomized Trial

    Get PDF
    Purpose Continuous sciatic nerve blocks have proven benefits for postoperative analgesia after foot surgery. However, the optimal mode of administration remains a point of debate. Ultrasound guided subparaneural injection accelerates onset time and increases duration after a single shot sciatic nerve block. This double blind prospective randomized trial compares the 48-hour local anesthetic (LA) dose consumption of an automated intermittent bolus technique to a continuous infusion regimen in a subparaneural sciatic nerve catheter after hallux valgus surgery. Patients and Methods Patients scheduled for hallux valgus surgery were randomized to receive either a continuous infusion of levobupivacaine 0.125% at 5mL/h (group A) or an intermittent automated bolus of 9.8 mL every 2 hours with a background of 0.1 mL/h (group B), both with a PCA bolus of 6 mL and lockout of 30 minutes. The 48 hour LA consumption, PCA boluses, Numeric Rating Scale (NRS), satisfaction and return of normal sensation were recorded. Results Sixteen patients were excluded because of protocol violation or technical problems and 42 patients remained for analysis. The 48 hour ropivacaine consumption was higher in group A (293 ±60 mL) than group B (257±33 mL). The median and highest NRS scores and patient satisfaction were not statistically different between groups. Normal sensation returned after 75 ± 22 hours (group A) and 70 ± 17 hours (group B). Conclusion Programmed bolus administration in subparaneural sciatic nerve catheters reduces LA consumption 48 hours after surgery with equal analgesia and patient satisfaction. Return of sensation is variable and can last more than 75 hours

    Enhanced study of facial soft tissues using a novel large scale histology technique

    Get PDF
    The safety and effectiveness of facial cosmetic surgery procedures are dependent on detailed 3D understanding of the complex surgical anatomy of the face. Traditional, small sample size anatomical dissection studies have limitations in providing definitive clarification of the fascial layers of the face, and especially in their relationship with the facial nerve, and their reaction to surgical manipulation. The objective study of large tissue areas is required to effectively demonstrate the broader architecture. Conventional histology techniques were modified to handle extraordinarily large tissue samples to fulfill this requirement. Full-thickness soft tissue samples (skin to bone) of maximum length 18 cm, width 4 cm, and tissue thickness 1 cm, were harvested from 20 hemifaces of 15 fresh human cadavers (mean age at death = 81 years). After fixation, the samples were processed with an automated processor using paraffin wax for 156 h, sectioned at 30 μm, collected on gelatin-chromium-coated glass slides, stained with a Masson's Trichrome technique and photographed. Using this technique, excellent visualization was obtained of the fascial connective tissue and its relationship with the facial mimetic muscles, muscles of mastication and salivary glands in 73 large histological slides. The resulting slides improved the study of the platysma and superficial musculo-aponeurotic system (SMAS), the spaces and ligaments, the malar fat pad, and the facial nerve in relations to the deep fascia. Additionally, surgically induced changes in the soft-tissue organization were successfully visualized. This technique enables improved insight into the broad structural architecture and histomorphology of large-scale facial tissues.</p

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore