3 research outputs found
Single-Crystal Organic Charge-Transfer Interfaces probed using Schottky-Gated Heterostructures
Organic semiconductors based on small conjugated molecules generally behave
as insulators when undoped, but the hetero-interfaces of two such materials can
show electrical conductivity as large as in a metal. Although charge transfer
is commonly invoked to explain the phenomenon, the details of the process and
the nature of the interfacial charge carriers remain largely unexplored. Here
we use Schottky-gated heterostructures to probe the conducting layer at the
interface between rubrene and PDIF-CN2 single crystals. Gate-modulated
conductivity measurements demonstrate that interfacial transport is due to
electrons, whose mobility exhibits band-like behavior from room temperature to
~ 150 K, and remains as high as ~ 1 cm2V-1s-1 at 30 K for the best devices. The
electron density decreases linearly with decreasing temperature, an observation
that can be explained quantitatively based on the heterostructure band diagram.
These results elucidate the electronic structure of rubrene-PDIF-CN2 interfaces
and show the potential of Schottky-gated organic heterostructures for the
investigation of transport in molecular semiconductors.Comment: 37 pages, 9 Figures (including supplementary information
Very low bias stress in n-type organic single crystal transistors
Bias stress effects in n-channel organic field-effect transistors (OFETs) are
investigated using PDIF-CN2 single-crystal devices with Cytop gate dielectric,
both under vacuum and in ambient. We find that the amount of bias stress is
very small as compared to all (p-channel) OFETs reported in the literature.
Stressing the PDIF-CN2 devices by applying 80 V to the gate for up to a week
results in a decrease of the source drain current of only ~1% under vacuum and
~10% in air. This remarkable stability of the devices leads to characteristic
time constants, extracted by fitting the data with a stretched exponential -
that are \tau ~ 2\cdot10^9 s in air and \tau ~ 5\cdot10^9 s in vacuum -
approximately two orders of magnitude larger than the best values reported
previously for p-channel OFETs.Comment: Submitted to Applied Physics Letters; 14 pages, 3 figure
Tailoring the molecular structure to suppress extrinsic disorder in organic transistors
In organic field-effect transistors, the structure of the constituent
molecules can be tailored to minimize the disorder experienced by charge
carriers. Experiments on two perylene derivatives show that disorder can be
suppressed by attaching longer core substituents - thereby reducing potential
fluctuations in the transistor channel and increasing the mobility at low
temperature - without altering the intrinsic transport properties