161 research outputs found

    Predicting invasions of North American basses in Japan using native range data and a genetic algorithm

    Get PDF
    Largemouth bass Micropterus salmoides and smallmouth bass M. dolomieu have been introduced into freshwater habitats in Japan, with potentially serious consequences for native fish populations. In this paper we apply the technique of ecological niche modeling using the genetic algorithm for rule-set prediction (GARP) to predict the potential distributions of these two species in Japan. This algorithm constructs a niche model based on point occurrence records and ecological coverages. The model can be visualized in geographic space, yielding a prediction of potential geographic range. The model can then be tested by determining how well independent point occurrence data are predicted according to the criteria of sensitivity and specificity provided by receiver–operator curve analysis. We ground-truthed GARP’s ability to forecast the geographic occurrence of each species in its native range. The predictions were statistically significant for both species (P , 0.001). We projected the niche models onto the Japanese landscape to visualize the potential geographic ranges of both species in Japan. We tested these predictions using known occurrences from introduced populations of largemouth bass, both in the aggregate and by habitat type. All analyses robustly predicted known Japanese occurrences (P , 0.001). The number of smallmouth bass in Japan was too small for statistical tests, but the 10 known occurrences were predicted by the majority of models

    Contemporary Evolutionary Divergence for a Protected Species following Assisted Colonization

    Get PDF
    Contemporary evolution following assisted colonization may increase the probability of persistence for refuge populations established as a bet-hedge for protected species. Such refuge populations are considered "genetic replicates" that might be used for future re-colonization in the event of a catastrophe in the native site. Although maladaptive evolutionary divergence of captive populations is well recognized, evolutionary divergence of wild refuge populations may also occur on contemporary time scales. Thus, refuge populations may lose their "value" as true genetic replicates of the native population. Here, we show contemporary evolutionary divergence in body shape in an approximately 30-year old refuge population of the protected White Sands pupfish (Cyprinodon tularosa) resulting in a body-shape mismatch with its native environment.Geometric morphometic data were collected from C. tularosa cultures raised in experimental mesocosms. Cultures were initiated with fish from the two native populations, plus hybrids, in high or low salinity treatments representing the salinities of the two native habitats. We found that body shape was heritable and that shape variation due to phenotypic plasticity was small compared to shape variation due to population source. C. tularosa from the high salinity population retained slender body shapes and fish from the low salinity population retained deep body shapes, irrespective of mesocosm salinity. These data suggest that the observed divergence of a recently established pupfish population was not explained by plasticity. An analysis of microsatellite variation indicated that no significant genetic drift occurred in the refuge population, further supporting the adaptive nature of changes in body shape. These lines of evidence suggest that body shape divergence of the refuge population reflects a case of contemporary evolution (over a 30-year period).These results suggest assisted colonization can introduce novel, and/or relaxed selection, and lead to unintended evolutionary divergence

    Complex evolutionary history of the Mexican stoneroller Campostoma ornatum Girard, 1856 (Actinopterygii: Cyprinidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of the phylogeography of Mexican species are steadily revealing genetic patterns shared by different species, which will help to unravel the complex biogeographic history of the region. <it>Campostoma ornatum </it>is a freshwater fish endemic to montane and semiarid regions in northwest Mexico and southern Arizona. Its wide range of distribution and the previously observed morphological differentiation between populations in different watersheds make this species a useful model to investigate the biogeographic role of the Sierra Madre Occidental and to disentangle the actions of Pliocene tecto-volcanic processes <it>vs </it>Quaternary climatic change. Our phylogeographic study was based on DNA sequences from one mitochondrial gene (<it>cytb</it>, 1110 bp, n = 285) and two nuclear gene regions (S7 and RAG1, 1822 bp in total, n = 56 and 43, respectively) obtained from 18 to 29 localities, in addition to a morphological survey covering the entire distribution area. Such a dataset allowed us to assess whether any of the populations/lineages sampled deserve to be categorised as an evolutionarily significant unit.</p> <p>Results</p> <p>We found two morphologically and genetically well-differentiated groups within <it>C. ornatum</it>. One is located in the northern river drainages (Yaqui, Mayo, Fuerte, Sonora, Casas Grandes, Santa Clara and Conchos) and another one is found in the southern drainages (Nazas, Aguanaval and Piaxtla). The split between these two lineages took place about 3.9 Mya (CI = 2.1-5.9). Within the northern lineage, there was strong and significant inter-basin genetic differentiation and also several secondary dispersal episodes whit gene homogenization between drainages. Interestingly, three divergent mitochondrial lineages were found in sympatry in two northern localities from the Yaqui river basin.</p> <p>Conclusions</p> <p>Our results indicate that there was isolation between the northern and southern phylogroups since the Pliocene, which was related to the formation of the ancient Nazas River paleosystem, where the southern group originated. Within groups, a complex reticulate biogeographic history for <it>C. ornatum </it>populations emerges, following the taxon pulse theory and mainly related with Pliocene tecto-volcanic processes. In the northern group, several events of vicariance promoted by river or drainage isolation episodes were found, but within both groups, the phylogeographic patterns suggest the occurrence of several events of river capture and fauna interchange. The Yaqui River supports the most diverse populations of <it>C. ornatum</it>, with several events of dispersal and isolation within the basin. Based on our genetic results, we defined three ESUs within <it>C. ornatum </it>as a first attempt to promote the conservation of the evolutionary processes determining the genetic diversity of this species. They will likely be revealed as a valuable tool for freshwater conservation policies in northwest Mexico, where many environmental problems concerning the use of water have rapidly arisen in recent decades.</p

    Spatial Geographic Mosaic in an Aquatic Predator-Prey Network

    Get PDF
    The geographic mosaic theory of coevolution predicts 1) spatial variation in predatory structures as well as prey defensive traits, and 2) trait matching in some areas and trait mismatching in others mediated by gene flow. We examined gene flow and documented spatial variation in crushing resistance in the freshwater snails Mexipyrgus churinceanus, Mexithauma quadripaludium, Nymphophilus minckleyi, and its relationship to the relative frequency of the crushing morphotype in the trophically polymorphic fish Herichthys minckleyi. Crushing resistance and the frequency of the crushing morphotype did show spatial variation among 11 naturally replicated communities in the Cuatro Ciénegas valley in Mexico where these species are all endemic. The variation in crushing resistance among populations was not explained by geographic proximity or by genetic similarity in any species. We detected clear phylogeographic patterns and limited gene flow for the snails but not for the fish. Gene flow among snail populations in Cuatro Ciénegas could explain the mosaic of local divergence in shell strength and be preventing the fixation of the crushing morphotype in Herichthys minckleyi. Finally, consistent with trait matching across the mosaic, the frequency of the fish morphotype was negatively correlated with shell crushing resistance likely reflecting the relative disadvantage of the crushing morphotype in communities where the snails exhibit relatively high crushing resistance

    A New Genus And 2 New Species Of Subterranean Amphipod Crustaceans Gammaridae From Northern Mexico

    No full text
    Volume: 83Start Page: 425End Page: 44

    Origins and ecological consequences of pollen specialization among desert bees.

    No full text
    An understanding of the evolutionary origins of insect foraging specialization is often hindered by a poor biogeographical and palaeoecological record. The historical biogeography (20,000 years before present to the present) of the desert-limited plant, creosote bush (Larrea tridentata), is remarkably complete. This history coupled with the distribution pattern of its bee fauna suggests pollen specialization for creosote bush pollen has evolved repeatedly among bees in the Lower Sonoran and Mojave deserts. In these highly xeric, floristically depauperate environments, species of specialist bees surpass generalist bees in diversity, biomass and abundance. The ability of specialist bees to facultatively remain in diapause through resource-poor years and to emerge synchronously with host plant bloom in resource-rich years probably explains their ecological dominance and persistence in these areas. Repeated origins of pollen specialization to one host plant where bloom occurs least predictably is a counter-example to prevailing theories that postulate such traits originate where the plant grows best and blooms most reliably Host-plant synchronization, a paucity of alternative floral hosts, or flowering attributes of creosote bush alone or in concert may account for the diversity of bee specialists that depend on this plant instead of nutritional factors or chemical coevolution between floral rewards and the pollinators they have evolved to attract
    corecore