64 research outputs found

    Bound States in the AdS/CFT Correspondence

    Full text link
    We consider a massive scalar field theory in anti-de Sitter space, in both minimally and non-minimally coupled cases. We introduce a relevant double-trace perturbation at the boundary, by carefully identifying the correct source and generating functional for the corresponding conformal operator. We show that such relevant double-trace perturbation introduces changes in the coefficients in the boundary terms of the action, which in turn govern the existence of a bound state in the bulk. For instance, we show that the usual action, containing no additional boundary terms, gives rise to a bound state, which can be avoided only through the addition of a proper boundary term. Another notorious example is that of a conformally coupled scalar field, supplemented by a Gibbons-Hawking term, for which there is no associated bound state. In general, in both minimally and non-minimally coupled cases, we explicitly compute the boundary terms which give rise to a bound state, and which ones do not. In the non-minimally coupled case, and when the action is supplemented by a Gibbons-Hawking term, this also fixes allowed values of the coupling coefficient to the metric. We interpret our results as the fact that the requirement to satisfy the Breitenlohner-Freedman bound does not suffice to prevent tachyonic behavior from existing in the bulk, as it must be supplemented by additional conditions on the coefficients in the boundary terms of the action.Comment: 32 pages, Latex. v2: added comments and clarifications, minor changes. v3: corrected wrong result in the non-minimally coupled case, added reference, minor changes. v4: Added new results and discussions, parts of the paper are rewritten. Final version to be published in Phys.Rev.

    Multitrace deformations, Gamow states, and Stability of AdS/CFT

    Full text link
    We analyze the effect of multitrace deformations in conformal field theories at leading order in a large N approximation. These theories admit a description in terms of a weakly coupled gravity dual. We show how the deformations can be mapped into boundary terms of the gravity theory and how to reproduce the RG equations found in field theory. In the case of doubletrace deformations, and for bulk scalars with masses in the range −d2/4<m2<−d2/4+1-d^2/4<m^2<-d^2/4+1, the deformed theory flows between two fixed points of the renormalization group, manifesting a resonant behavior at the scale characterizing the transition between the two CFT's. On the gravity side the resonance is mapped into an IR non-normalizable mode (Gamow state) whose overlap with the UV region increases as the dual operator approaches the free field limit. We argue that this resonant behavior is a generic property of large N theories in the conformal window, and associate it to a remnant of the Nambu-Goldstone mode of dilatation invariance. We emphasize the role of nonminimal couplings to gravity and establish a stability theorem for scalar/gravity systems with AdS boundary conditions in the presence of arbitrary boundary potentials and nonminimal coupling.Comment: 14 pages, references added, introduction change

    States and Boundary Terms: Subtleties of Lorentzian AdS/CFT

    Full text link
    We complete the project of specifying the Lorentzian AdS/CFT correspondence and its approximation by bulk semi-classical methods begun by earlier authors. At the end, the Lorentzian treatment is self-contained and requires no analytic continuation from the Euclidean. The new features involve a careful study of boundary terms associated with an initial time t−t_- and a final time t+t_+. These boundary terms are determined by a choice of quantum states. The main results in the semi-classical approximation are 1) The times t±t_\pm may be finite, and need only label Cauchy surfaces respectively to the past and future of the points at which one wishes to obtain CFT correlators. Subject to this condition on t±t_\pm, we provide a bulk computation of CFT correlators that is manifestly independent of t±t_\pm. 2) As a result of (1), all CFT correlators can be expressed in terms of a path integral over regions of spacetime {\it outside} of any black hole horizons. 3) The details of the boundary terms at t±t_\pm serve to guarrantee that, at leading order in this approximation, any CFT one-point function is given by a simple boundary value of the classical bulk solution at null infinity, II. This work is dedicated to the memory of Bryce S. DeWitt. The remarks in this paper largely study the relation of the AdS/CFT dictionary to the Schwinger variational principle, which the author first learned from DeWitt as a Ph.D. student.Comment: 31 pages, JHEP style, various typos correcte

    Spectral Flow in AdS(3)/CFT(2)

    Full text link
    We study the spectral flowed sectors of the H3 WZW model in the context of the holographic duality between type IIB string theory in AdS(3)x S^3 x T^4 with NSNS flux and the symmetric product orbifold of T^4. We construct explicitly the physical vertex operators in the flowed sectors that belong to short representations of the superalgebra, thus completing the bulk-to-boundary dictionary for 1/2 BPS states. We perform a partial calculation of the string three-point functions of these operators. A complete calculation would require the three-point couplings of non-extremal flowed operators in the H3 WZW model, which are at present unavailable. In the unflowed sector, perfect agreement has recently been found between the bulk and boundary three-point functions of 1/2 BPS operators. Assuming that this agreement persists in the flowed sectors, we determine certain unknown three-point couplings in the H3 WZW model in terms of three-point couplings of affine descendants in the SU(2) WZW model.Comment: 50 pages, 2 figure

    Geometry of Schroedinger Space-Times II: Particle and Field Probes of the Causal Structure

    Full text link
    We continue our study of the global properties of the z=2 Schroedinger space-time. In particular, we provide a codimension 2 isometric embedding which naturally gives rise to the previously introduced global coordinates. Furthermore, we study the causal structure by probing the space-time with point particles as well as with scalar fields. We show that, even though there is no global time function in the technical sense (Schroedinger space-time being non-distinguishing), the time coordinate of the global Schroedinger coordinate system is, in a precise way, the closest one can get to having such a time function. In spite of this and the corresponding strongly Galilean and almost pathological causal structure of this space-time, it is nevertheless possible to define a Hilbert space of normalisable scalar modes with a well-defined time-evolution. We also discuss how the Galilean causal structure is reflected and encoded in the scalar Wightman functions and the bulk-to-bulk propagator.Comment: 32 page

    Mixed RG Flows and Hydrodynamics at Finite Holographic Screen

    Full text link
    We consider quark-gluon plasma with chemical potential and study renormalization group flows of transport coefficients in the framework of gauge/gravity duality. We first study them using the flow equations and compare the results with hydrodynamic results by calculating the Green functions on the arbitrary slice. Two results match exactly. Transport coefficients at arbitrary scale is ontained by calculating hydrodynamics Green functions. When either momentum or charge vanishes, transport coefficients decouple from each other.Comment: 22 pages, 6 figure

    A Field-theoretical Interpretation of the Holographic Renormalization Group

    Get PDF
    A quantum-field theoretical interpretation is given to the holographic RG equation by relating it to a field-theoretical local RG equation which determines how Weyl invariance is broken in a quantized field theory. Using this approach we determine the relation between the holographic C theorem and the C theorem in two-dimensional quantum field theory which relies on the Zamolodchikov metric. Similarly we discuss how in four dimensions the holographic C function is related to a conjectured field-theoretical C function. The scheme dependence of the holographic RG due to the possible presence of finite local counterterms is discussed in detail, as well as its implications for the holographic C function. We also discuss issues special to the situation when mass deformations are present. Furthermore we suggest that the holographic RG equation may also be obtained from a bulk diffeomorphism which reduces to a Weyl transformation on the boundary.Comment: 24 pages, LaTeX, no figures; references added, typos corrected, paragraph added to section

    Clean Time-Dependent String Backgrounds from Bubble Baths

    Full text link
    We consider the set of controlled time-dependent backgrounds of general relativity and string theory describing ``bubbles of nothing'', obtained via double analytic continuation of black hole solutions. We analyze their quantum stability, uncover some novel features of their dynamics, identify their causal structure and observables, and compute their particle production spectrum. We present a general relation between squeezed states, such as those arising in cosmological particle creation, and nonlocal theories on the string worldsheet. The bubble backgrounds have various aspects in common with de Sitter space, Rindler space, and moving mirror systems, but constitute controlled solutions of general relativity and string theory with no external forces. They provide a useful theoretical laboratory for studying issues of observables in systems with cosmological horizons, particle creation, and time-dependent string perturbation theory.Comment: 38 pages, harvmac big, 6 figure

    Affine sl(N) conformal blocks from N=2 SU(N) gauge theories

    Get PDF
    Recently Alday and Tachikawa proposed a relation between conformal blocks in a two-dimensional theory with affine sl(2) symmetry and instanton partition functions in four-dimensional conformal N=2 SU(2) quiver gauge theories in the presence of a certain surface operator. In this paper we extend this proposal to a relation between conformal blocks in theories with affine sl(N) symmetry and instanton partition functions in conformal N=2 SU(N) quiver gauge theories in the presence of a surface operator. We also discuss the extension to non-conformal N=2 SU(N) theories.Comment: 40 pages. v2: minor changes and clarification

    Holographic and Wilsonian Renormalization Groups

    Full text link
    We develop parallels between the holographic renormalization group in the bulk and the Wilsonian renormalization group in the dual field theory. Our philosophy differs from most previous work on the holographic RG; the most notable feature is the key role of multi-trace operators. We work out the forms of various single- and double-trace flows. The key question, `what cutoff on the field theory corresponds to a radial cutoff in the bulk?' is left unanswered, but by sharpening the analogy between the two sides we identify possible directions.Comment: 31 pages, 3 figures. v2: Minor clarifications. Added reference
    • 

    corecore