369 research outputs found

    Surgical management of a giant atrial septal aneurysm

    Get PDF
    We experienced a very rare case of surgical management of a giant atrial septal aneurysm. It is an interesting case and is supported by preoperative, intraoperative, and pathology images

    Quiescence-inducing neurons-induced hypometabolism ameliorates acute kidney injury in a mouse model mimicking cardiovascular surgery requiring circulatory arrest

    Get PDF
    OBJECTIVES: Acute kidney injury is a serious complication after cardiovascular surgery requiring circulatory arrest. It is reported that mice can be induced into a hibernation-like hypometabolic state by stimulating a specific neuron located at the hypothalamus (quiescence-inducing neurons-induced hypometabolism [QIH]). Here, we investigated the efficacy of QIH for the amelioration of acute kidney injury in an experimental circulatory arrest using a transgenic mouse model. METHODS: We genetically prepared mice in which QIH can be conditionally induced (QIH-ready mice). Mice were divided into 4 groups (n = 6 for each): QIH-ready normothermia (QN), QIH-ready hypothermia (QH), control normothermia (CN), and control hypothermia (CH). After induction of QIH, left thoracotomy and descending aorta crossclamping were conducted. After reperfusion, we collected kidneys and evaluated histologic changes and serum biochemical markers, specifically neutrophil gelatinase-associated lipocalin and cystatin C, indicating early kidney injury. RESULTS: Normothermia showed higher tubular injury scores than those in hypothermia (QN vs QH [P = .0021] and CN vs CH [P < .001]). QN exhibited lower neutrophil gelatinase-associated lipocalin and cystatin C levels than those in CN (neutrophil gelatinase-associated lipocalin: CN vs QN: 1.51 ± 0.71 vs 0.82 ± 0.32; P = .0414 and cystatin C: 1.48 ± 0.39 vs 0.71 ± 0.26; P = .0015). There was no significant difference between QN and QH. CONCLUSIONS: QIH partly ameliorated acute kidney injury in a mouse ischemia model even in normothermia. QIH might be a promising approach to achieving sufficient kidney protection without hypothermic circulatory arrest in the future

    Novel device prototyping for endoscopic cell sheet transplantation using a three-dimensional printed simulator

    Get PDF
    手術負担の少ない内視鏡による心臓表面への細胞シート移植デバイスを開発 --心臓再生医療への応用を目指して--. 京都大学プレスリリース. 2020-11-20.Introduction: Considering higher risks of candidates for cardiac regenerative therapy with compromised cardiac function, it is anticipated to develop less invasive surgical procedures. In the present study, we aimed to develop a prototype of totally endoscopic cell sheet delivery device and evaluate the surgical technique for epicardial cell sheet placement using three-dimensional (3D) printed simulators based on human computed tomography data. Methods: We designed an endoscopic cell sheet delivery device with outer and inner frame with self-expandable applicator which can be opened in thoracic cavity. We launched spout line to provide liquids on the applicator surface and tension line to gently bend the applicator dorsally. We prepared human mesenchymal stem cell (MSC) sheets and compared wet/dry conditions of 3D printed heart/porcine heart and applicator to identify suitable conditions for cell sheet transplantation. Finally we validated the feasibility of endoscopic transplantation to anterior and lateral wall of left ventricle using 3D printed simulators. Results: Moist condition of both 3D printed heart/porcine heart surface and applicator at transplantation yielded highest successful rate (100%, p = 0.0197). For both endoscopic transplantation sites, MSC sheets were successfully deployed. The procedure duration was 157 ± 23 s for anterior wall and 123 ± 13 s for the lateral wall in average, respectively. Conclusions: We developed a novel prototype of endoscopic cell sheet delivery device for minimally-invasive cardiac regenerative therapy utilizing a 3D printed simulator. The commercialization of the prototype may provide a safe minimally-invasive method to deliver potential cardiac regenerative therapy in the future

    Therapeutic potential of clinical-grade human induced pluripotent stem cell-derived cardiac tissues

    Get PDF
    Objectives: To establish a protocol to prepare and transplant clinical-grade human induced pluripotent stem cell (hiPSC)-derived cardiac tissues (HiCTs) and to evaluate the therapeutic potential in an animal myocardial infarction (MI) model. Methods: We simultaneously differentiated clinical-grade hiPSCs into cardiovascular cell lineages with or without the administration of canonical Wnt inhibitors, generated 5- layer cell sheets with insertion of gelatin hydrogel microspheres (GHMs) (HiCTs), and transplanted them onto an athymic rat MI model. Cardiac function was evaluated by echocardiography and cardiac magnetic resonance imaging and compared with that in animals with sham and transplantation of 5-layer cell sheets without GHMs. Graft survival, ventricular remodeling, and neovascularization were evaluated histopathologically. Results: The administration of Wnt inhibitors significantly promoted cardiomyocyte (CM) (P < .0001) and vascular endothelial cell (EC) (P = .006) induction, which resulted in cellular components of 52.0 ± 6.1% CMs and 9.9 ± 3.0% ECs. Functional analyses revealed the significantly lowest left ventricular end-diastolic volume and highest ejection fraction in the HiCT group. Histopathologic evaluation revealed that the HiCT group had a significantly larger median engrafted area (4 weeks, GHM(-) vs HiCT: 0.4 [range, 0.2-0.7] mm² vs 2.2 [range, 1.8-3.1] mm²; P = .005; 12 weeks, 0 [range, 0-0.2] mm² vs 1.9 [range, 0.1-3.2] mm2; P = .026), accompanied by the smallest scar area and highest vascular density at the MI border zone. Conclusions: Transplantation of HiCTs generated from clinical-grade hiPSCs exhibited a prominent therapeutic potential in a rat MI model and may provide a promising therapeutic strategy in cardiac regenerative medicine

    En bloc excision of giant polycystic liver with hepatic cava and its auto-transplant caval reconstruction as a safe surgical procedure for liver transplantation

    Get PDF
    Safely excising a giant liver while leaving the hepatic inferior vena cava intact is difficult. Hata et al. present images and videos describing their novel technique consisting of total hepatectomy including the hepatic cava; extracorporeal retrieval; and auto‐transplant inferior vena cava reconstruction, for an extremely enlarged polycystic liver weighing 24 kg.[Image: see text

    A novel approach for the endothelialization of xenogeneic decellularized vascular tissues by human cells utilizing surface modification and dynamic culture

    Get PDF
    Decellularized xenogeneic vascular grafts can be used in revascularization surgeries. We have developed decellularization methods using high hydrostatic pressure (HHP), which preserves the extracellular structure. Here, we attempted ex vivo endothelialization of HHP-decellularized xenogeneic tissues using human endothelial cells (ECs) to prevent clot formation against human blood. Slices of porcine aortic endothelium were decellularized using HHP and coated with gelatin. Human umbilical vein ECs were directly seeded and cultured under dynamic flow or static conditions for 14 days. Dynamic flow cultures tend to demonstrate higher cell coverage. We then coated the tissues with the E8 fragment of human laminin-411 (hL411), which has high affinity for ECs, and found that Dynamic/hL411showed high area coverage, almost reaching 100% (Dynamic/Gelatin vs Dynamic/hL411; 58.7 ± 11.4 vs 97.5 ± 1.9%, P = 0.0017). Immunostaining revealed sufficient endothelial cell coverage as a single cell layer in Dynamic/hL411. A clot formation assay using human whole blood showed low clot formation in Dynamic/hL411, almost similar to that in the negative control, polytetrafluoroethylene. Surface modification of HHP-decellularized xenogeneic endothelial tissues combined with dynamic culture achieved sufficient ex vivo endothelialization along with prevention of clot formation, indicating their potential for clinical use as vascular grafts in the future

    Novel synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins

    Get PDF
    Pilot-scale libraries of eight-membered medium ring lactams (MRLs) and related tricyclic compounds (either seven-membered lactams, thiolactams or amines) were screened for their ability to inhibit the catalytic activity of human recombinant 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in vitro. A dozen of the synthetic compounds mimic the inhibition of purified HMG-CoA reductase activity caused by pravastatin, fluvastatin and sodium salts of lovastatin, mevastatin and simvastatin in this cell-free assay, suggesting direct interaction with the rate-limiting enzyme of cholesterol biosynthesis. Moreover, several MRLs inhibit the metabolic activity of L1210 tumor cells in vitro to a greater degree than fluvastatin, lovastatin, mevastatin and simvastatin, whereas pravastatin is inactive. Although the correlation between the concentration-dependent inhibitions of HMG-CoA reductase activity over 10 min in the cell-free assay and L1210 tumor cell proliferation over 4 days in culture is unclear, some bioactive MRLs elicit interesting combinations of statin-like (IC50: 7.4-8.0 µM) and anti-tumor (IC50: 1.4-2.3 µM) activities. The HMG-CoA reductase-inhibiting activities of pravastatin and an MRL persist in the presence of increasing concentrations of NADPH. But increasing concentrations of HMG-CoA block the HMG-CoA reductase-inhibiting activity of pravastatin without altering that of an MRL, suggesting that MRLs and existing statins may have different mechanisms of enzyme interaction and inhibition. When tested together, suboptimal concentrations of synthetic MRLs and existing statins have additive inhibitory effects on HMG-CoA reductase activity. Preliminary molecular docking studies with MRL-based inhibitors indicate that these ligands fit sterically well into the HMG-CoA reductase statin-binding receptor model and, in contrast to mevastatin, may occupy a narrow channel housing the pyridinium moiety on NADP+

    Pharmacist-physician collaborative care for outpatients with left ventricular assist devices using a cloud-based home medical management information-sharing system: a case report

    Get PDF
    [Background] The standard anticoagulation therapy for patients implanted with left ventricular assist devices (LVADs) includes warfarin therapy. We developed a cloud-based home medical management information-sharing system named as LVAD@home. The LVAD@home system is an application designed to be used on iPad tablet computers. This system enables the sharing of daily information between a patient and care providers in real time. In this study, we reported cases of outpatients with LVADs using this system to manage anticoagulation therapy. [Case presentation] The patient, a man in his 40s with end-stage heart failure owing to non-ischemic dilated cardiomyopathy, underwent LVAD implantation and warfarin was started on postoperative day 1. He started to use LVAD@home to manage warfarin therapy after discharge (postoperative day 47). He sent his data to care providers daily. By using this system, the pharmacist observed his signs of reduced dietary intake 179 days after discharge, and after consulting the physician, told the patient to change the timing of the next measurement earlier than usual. On the next day, the prothrombin time-international normalized ratio increased from 2.0 to 3.0, and thus the dose was decreased by 0.5 mg. Four patients used this system to monitor warfarin therapy from October 2015 to March 2018. In these patients, the time in therapeutic range was 90.1 ± 1.3, which was higher than that observed in previous studies. Additionally, there were no thromboembolic events or bleeding events. [Conclusions] The cloud-based home management system can be applied to share real-time patient information of factors, including dietary intake that interact with warfarin. It can help to improve long-term anticoagulation outcomes in patients implanted with LVAD
    corecore