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Abstract. Pilot-scale libraries of eight-membered medium
ring lactams (MRLs) and related tricyclic compounds (either
seven-membered lactams, thiolactams or amines) were
screened for their ability to inhibit the catalytic activity of
human recombinant 3-hydroxy-3-methylglutaryl-coenzyme
A (HMG-CoA) reductase in vitro. A dozen of the synthetic
compounds mimic the inhibition of purified HMG-CoA
reductase activity caused by pravastatin, fluvastatin and
sodium salts of lovastatin, mevastatin and simvastatin in this
cell-free assay, suggesting direct interaction with the rate-
limiting enzyme of cholesterol biosynthesis. Moreover,
several MRLs inhibit the metabolic activity of L1210 tumor
cells in vitro to a greater degree than fluvastatin, lovastatin,
mevastatin and simvastatin, whereas pravastatin is inactive.
Although the correlation between the concentration-
dependent inhibitions of HMG-CoA reductase activity over
10 min in the cell-free assay and L1210 tumor cell prolifera-
tion over 4 days in culture is unclear, some bioactive MRLs
elicit interesting combinations of statin-like (ICy,: 7.4-8.0 uM)
and anti-tumor (ICs,: 1.4-2.3 yuM) activities. The HMG-CoA
reductase-inhibiting activities of pravastatin and an MRL
persist in the presence of increasing concentrations of
NADPH. But increasing concentrations of HMG-CoA block
the HMG-CoA reductase-inhibiting activity of pravastatin
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without altering that of an MRL, suggesting that MRLs and
existing statins may have different mechanisms of enzyme
interaction and inhibition. When tested together, suboptimal
concentrations of synthetic MRLs and existing statins have
additive inhibitory effects on HMG-CoA reductase activity.
Preliminary molecular docking studies with MRL-based
inhibitors indicate that these ligands fit sterically well into the
HMG-CoA reductase statin-binding receptor model and, in
contrast to mevastatin, may occupy a narrow channel housing
the pyridinium moiety on NADP+.

Introduction

Eight-membered and medium-ring lactones are rare and their
therapeutic properties largely unknown (1-4). A synthetic
analog of the natural marine product, octalactin A (1), was
previously shown to inhibit L1210 tumor cell proliferation
without altering the rates of DNA, RNA and protein syntheses
(2). But this compound inhibited the polymerization of
purified tubulin, suggesting that microtubule de-stabilization
might be involved in its cytostatic action (2). Pilot-scale
libraries of 2nd and 3rd generation 8-membered medium-ring
lactams (MRLs) inspired by octalactin A were then synthe-
sized for optimization studies and screened for bioactivity in
hyperplastic tumor cell systems in vitro (3.4). Several MRLs
inhibited, in a concentration- and time-dependent manner,
tumor cell proliferation in the low xM range after 2 and 4
days in culture and were effective across a spectrum of
leukemic (L1210 and HL-60), pancreatic (Pan02) and mam-
mary (SK-BR-3) tumor cell lines. Novel MRLs containing
series of amino acid derivatives inhibited the metabolic
activity of tumor cells in the nM range after 2-4 days and
blocked the incorporations of *H-thymidine into DNA, 3H-
uridine into RNA and *H-leucine into protein used to assess
the rates of macromolecule syntheses in L1210 tumor cells
after 1.5-3 h.
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When tested for their DNA-binding affinity, however, anti-
proliferative MRLs did not induce a loss of ethidium bromide
(EB) fluorescence, suggesting that these compounds did not
directly interact with double-stranded DNA to disrupt its
structural and functional integrity and prevent EB from inter-
calating into DNA base pairs. As compared to microtubule-
disrupting agents, antiproliferative MRLs very weakly
increased the mitotic index of L1210 tumor cells at 24 h but
stimulated the formation of many binucleated cells and a few
micronuclei, suggesting that MRLs might enhance mitotic
abnormality, induce chromosomal damage or missegregation,
and block cytokinesis. Interestingly, certain MRL structures
were recently discovered to directly inhibit the catalytic
activity of human 3-hydroxy-3-methylglutaryl-coenzyme A
(HMG-CoA) reductase in a cell-free assay in vitro, suggesting
that these novel small molecules might elicit both antitumor
and statin-like activities. The present study was undertaken to
determine the combined HMG-CoA reductase-inhibiting and
antiproliferative activities of these unique MRL structures,
which occupy a region of chemical-space diversity that few
bioactive compounds populate and are structurally unrelated
to existing statin drugs.

Materials and methods
Compound synthesis. The synthesis of the 10-member sublib-

rary of novel unsaturated eight-membered lactam compounds
used in this study (DL-II-D4 and DL-II-D7; GG-II-Ala29,

Scheme 1
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GG-1I-G3-cis, and GG-1I-G7; NB-1X-Gly27, NB-IX-Gly35,
NB-I1X-Gly38, NB-IX-Gly44 and NB-1X-Gly46) was
performed in the convergent-divergent manner described
previously (3,4). In general, ring-closing metathesis (RCM)
of a collection of diene amides (prepared from the carboxylic
acids and the fluorinated secondary allyl amine), was followed,
after deprotection, by parallel derivatization of the resulting
cyclic secondary amine scaffold (Scheme 1). This process
afforded a series of amines (NB-IX-Gly27), amides (GG-II-
G3 and GG-II-G7), carbamates (NB-IX-Gly44 and NB-IX-
Gly46), sulfonamides (DL-II-D4, DL-II-D7, GG-1I-Ala29,
NB-IX-Gly35, and NB-IX-Gly38), and ureas (none in the
present study). Mixtures of diastereomeric derivatized lactams
were used in the present study with the exception of amide
GG-II-G3, which was prepared as the optically active,
diastereomerically pure cis isomer. The required amides were
themselves prepared from the naturally occurring and optically
pure amino acids glycine, L-alanine, and L-phenylalanine.

The synthesis of two of the most potent members of a
new class of tricyclic seven-membered lactam (SE-II1-468 and
SE-II1-525) was carried out using the aryne cycloaddition
strategies developed in the Buszek laboratories (Scheme 2)
(5-9). In this manner, a collection of tertiary diene amides
(prepared in four steps from Danheiser's aldehyde) (10) was
subjected to fluoride-induced decomposition of a tethered
o-silyltriflate moiety to give the benzyne, which then under-
went a facile intramolecular cycloaddition to afford directly
the desired compounds.
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HMG-CoA reductase activity. The HMG-CoA reductase
assay kit from Sigma-Aldrich (St. Louis, MO, USA) with the
catalytic domain of the human enzyme (recombinant GST
fusion protein expressed in E. coli) was used, under conditions
recommended by the manufacturer, to rapidly screen pilot-
scale libraries of novel MRLs and related derivatives and
identify the most effective lead bioactive compounds with
statin-like activities. The concentration of the purified human
enzyme stock solution (Sigma) was 0.52-0.85 mg protein/ml.
Reference statin drugs, including lovastatin, mevastatin,
simvastatin (all from Sigma) and sodium salts of fluvastatin
(from Alexis Biochemicals, San Diego, CA, USA), pravastatin
(from Sigma), lovastatin, mevastatin and simvastatin (all
from Calbiochem, EMD Chemicals Inc., La Jolla, CA, USA),
were used as positive controls. To characterize HMG-CoA
reductase inhibition under defined assay conditions, reac-
tions, containing 4 u1 of NADPH (to obtain a final concen-
tration of 400 M) and 12 ul of HMG-CoA substrate (to
obtain a final concentration of 400 M) in a final volume of
0.2 ml of 100 mM potassium phosphate buffer, pH 7.4,
containing 120 mM KCl, 1 mM EDTA and 5 mM DTT, were
initiated (time 0) by the addition of 2 ul of the catalytic
domain of human recombinant HMG-CoA reductase and
incubated in quartz microcells at 37°C in the presence or
absence (control) of 1-ul aliquots of drugs dissolved in
dimethyl sulfoxide (DMSO). The rates of NADPH consumed
were monitored every 20 sec for up to 300-720 sec by scanning
spectrophotometrically the decrease in absorbance at 340 nm,
using a Shimadzu UV-160 spectrophotometer equipped with
double-beam optics and a thermostatically controlled cell
holder. Results were expressed as % of the control specific
activity of the enzyme (zmol of NADPH oxidized/min/mg
protein) in the absence of drugs.

Cell culture and proliferation assay. Suspension cultures of
murine L1210 lymphocytic leukemia cells (ATCC, Manassas,
VA) were incubated at 37°C in a humidified atmosphere
containing 5% CO, and maintained in continuous exponential
growth by twice-a-week passage in RPMI-1640 medium
supplemented with 10% fetal bovine calf serum (Atlanta
Biologicals, Norcross, GA) and penicillin (100 IU/ml)-
streptomycin (100 pg/ml). L1210 cell suspensions were grown
in triplicate in 48-well Costar cell culture plates for 4 days in
the presence or absence (control) of serial concentrations of
synthetic MRLs or reference statin drugs, dissolved and
diluted in DMSO, to evaluate their antiproliferative activity.
Since compounds were supplemented to the culture medium
in 1-ul aliquots, the concentrations of vehicle in the final
incubation volume (0.5 ml) never exceeded 0.2% and did not
interfere with the data. The proliferation of drug-treated
L1210 tumor cells (initial density 4.7x103/0.5 ml/well) was
assessed from their mitochondrial ability to bioreduce the 3-
(4,5-dimethyl-thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium (MTS) reagent (Promega,
Madison, WI) in the presence of phenazine methosulfate
(PMS; Sigma) into a water-soluble formazan product that
absorbs at 490 nm (11). After 4 days in culture, control and
drug-treated L1210 cell samples (about 10%0.5 ml/well for
controls) were further incubated at 37°C for 2 h in the dark in
the presence of 0.1 ml of MTS:PMS (2:0.1) reagent and their
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relative metabolic activity was estimated by recording the
absorbance at 490 nm, using a Cambridge model 750 automatic
microplate reader (Packard, Downers Grove, IL). Blank
values for culture medium supplemented with MTS:PMS
reagent in the absence of cells were substracted from the
results. Data were analyzed using Student's t-test with a level
of significance set at P<0.05.

Computational docking. Molecular docking was performed
to assess and compare the pharmacophore associated with
our HMG-CoA reductase-inhibiting MRLs and other known
statins. As receptor model, we chose the species with a co-
crystallized inhibitor with the greatest similarity to compound
DL-II-D4: structure 3BGL (PDB code) with a bound
sulfamoyl pyrrole species whose Tanimoto similarity to DL-
II-D4 was 0.45 as computed based on UNITY fingerprints
(12,13). For docking, the receptor was defined as all amino
acid residues within the 3BGL structure, devoid of any
crystallographic waters, ions or the bound ligand. The receptor
model was then protonated in SYBYL (14) assuming physio-
logical pH (i.e., anionic aspartate and glutamate species, and
cationic arginines and lysines). To define the range of
inhibitor interactions available to bound ligand, a protomol
file was constructed based on a chemically diverse set of co-
crystallized HMG-CoA reductase inhibitors as resolved in
the crystal structures ITHWL (15), 1DQ9 (16), 3CD5 (17),
and 3CCZ (17). The complete protein-ligand complexes were
mutually aligned in SYBYL (14) according to minimized Ca
root-mean-squared positional deviations. All ligands were
then extracted and merged into a single molecule file, which
was subjected to protomol-generation via Surflex (18) using
default settings for perception of donor, acceptor and hydro-
phobic features. Co-crystallized inhibitors from the structures
3BGL, IHWL, 1DQ9, 3CD5 and 3CCZ were then docked into
the HMG-CoA reductase receptor model via Surflex using
default settings and the protomol file defined above. This led to
very close structural agreement relative to the experimentally
resolved ligand atomic positions (average RMSD of 0.4 A).

Results

Inhibition of HMG-CoA reductase activity. Pilot-scale
libraries totaling 131 eight- or nine-membered MRLs and
related tricyclic compounds (either seven-membered lactams,
thiolactams or amines) were screened for their ability to
inhibit the catalytic activity of human recombinant HMG-
CoA reductase in vitro. The chemical syntheses and
structures of most of these novel compounds have already
been published or will be reported in detail elsewhere (3.4).
This study was initiated after we discovered that spectropho-
tometric time scans demonstrated the ability of 4-25 yM
concentrations of DL-II-D7 to increasingly mimic the
inhibitory activity of 41-256 nM concentrations of pravastatin
on the catalytic domain of purified HMG-CoA reductase in a
cell-free assay in vitro (Fig. 1), suggesting direct interaction
with the rate-limiting enzyme of cholesterol biosynthesis.
Because the inhibitory effects of DL-II-D7 appeared to be Y
maximal around 10 M (Fig. 1), this concentration was used
to screen several pilot-scale libraries of synthetic MRLs or
related compounds to identify novel HMG-CoA reductase
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Figure 1. Spectrophotometric time-scans demonstrating the ability of DL-II-
D7 (A) to mimic the HMG-CoA reductase-inhibiting activity of pravastatin
(B), using the HMG-CoA reductase screening assay kit from Sigma-Aldrich
in vitro. Reactions, containing 4 1 of NADPH and 12 ul of HMG-CoA
substrate in a final volume of 0.2 ml of assay buffer, were initiated (time 0)
by the addition of 2 u1 of the catalytic domain of human recombinant HMG-
CoA reductase and incubated in quartz microcells at 37°C in the presence or
absence (control) of 1-x1 aliquots of drugs dissolved in DMSO. The rates of
NADPH consumed were monitored every 20 sec for up to 500-600 sec by
scanning the decreases in absorbance at 340 nm. (A) The concentration of
the enzyme stock solution was 0.85 mg protein/ml and the specific activity
of the control reaction calculated between 20-300 sec was 0.555268 ymol of
NADPH oxidized/min/mg protein. (B) The concentration of the enzyme
stock solution was 0.6 mg protein/ml and the specific activity of the control
reaction calculated between 0-340 sec was 0.583976 pmol of NADPH
oxidized/min/mg protein.

120

100+

(=]
o
Ll

(2]
(=]
L]

F-Y
o

N
(=]

0 L L 1 I L
16 4 10 25 625
Drug concentrations (uM)

HMG-CoA reductase activity
(% of control)

Figure 2. Comparison of the abilities of serial concentrations (plotted on a
logarithmic scale) of GG-II-Ala29 (o), GG-1I-G3 (1), GG-1I-G7 (A), DL-II-
D4 (m) and DL-II-D7 (a) to directly inhibit the catalytic activity of human
HMG-CoA reductase in a cell-free assay in vitro. The concentration of the
HMG-CoA reductase stock solution was 0.6 mg protein/ml. Reactions were
incubated at 37°C in quartz microcells and the rates of NADPH consumed
were calculated from the decreases in spectrophotometric absorbance at
340 nm between 20 and 300 sec after addition of the enzyme. Results are
expressed as % of the control specific activity of the enzyme in the absence
of drugs (0.564405+0.044024 pmole of NADPH oxidized/min/mg protein,
100+7.8%, striped area). Bars, means + SD (n=3). *“Not different from control;
"P<0.05, °P<0.025 and 9P<0.005, smaller than control.

inhibitors. None of the first 16 eight-membered MRLs, synthe-
sized for optimization studies and previously tested for their
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Figure 3. Comparison of the abilities of serial concentrations (logarithmic
scale) of pravastatin (o), fluvastatin (V), lovastatin (o), mevastatin (0),
simvastatin (A) and sodium salts of lovastatin (e), mevastatin (m) and
simvastatin (a) to directly inhibit the catalytic activity of human HMG-CoA
reductase in a cell-free assay in vitro. The concentration of the HMG-CoA
reductase stock solution was 0.85 mg protein/ml. Reactions were incubated
at 37°C in quartz microcells and the rates of NADPH consumed were
calculated from the decreases in spectrophotometric absorbance at 340 nm
between 20 and 340 sec after addition of the enzyme. Results are expressed
as % of the control specific activity of the enzyme in the absence of drugs
(0.529439+0.043084 pmole of NADPH oxidized/min/mg protein,
100+8.1%, striped area). Bars, means + SD (n=3). “Not different from control;
bP<0.05, smaller than control.

antiproliferative activity, had any significant effect at 10 uM
in the HMG-CoA reductase activity assay. In contrast, 16 of
the next 64 compounds, representing a 3rd generation of
eight-membered MRLs, significantly inhibited the specific
activity of purified HMG-CoA reductase when compared at
10 M. Finally, a single of the last 51 compounds, representing
nine-membered MRLs and other related tricyclic structures,
was able to significantly inhibit HMG-CoA reductase activity
in the screening assay at 10 gM. Only the best 10 of those
17 novel HMG-CoA reductase-inhibiting compounds are
shown in this study, the structures of the most effective lead
compounds with statin-like activity being DL-II-D7, GG-II-
G3, GG-1I-G7, GG-II-Ala29 and DL-II-D4 (Fig. 2). Based
on full concentration-response curves, the IC, values for the
inhibition of HMG-CoA reductase activity by DL-II-D4, GG-
[I-Ala29, GG-1I-G7, GG-II-G3 and DL-II-D7 are 14.4+0.9,
11.5+£0.7, 10.3+0.5, 8.0+0.6 and 7.4+1.1 uM, respectively
(Fig. 2). But under similar experimental conditions in the
HMG-CoA reductase activity assay, the IC, values of known
HMG-CoA reductase inhibitors are: pravastatin, 66.1 nM;
fluvastatin, 172.8 nM; mevastatin (sodium salt), 119.2 nM;
simvastatin (sodium salt), 134.0 nM; and lovastatin (sodium
salt), 210.9 nM (Fig. 3). Mevastatin, simvastatin and lovas-
tatin, which require activation by cellular enzymes, are much
less effective against HMG-CoA reductase in this cell-free
assay (ICs, values: 22.5, 25.4 and 27.7 uM, respectively)
(Fig. 3).

The HMG-CoA reductase-inhibiting activities of pravas-
tatin and DL-II-D7 similarly persist in the presence of
increasing concentrations of NADPH (data not shown). But
increasing 400-6,400 uM concentrations of HMG-CoA
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Figure 4. Comparison of the abilities of 25 yM DL-II-D7 (striped columns)
and 256 nM pravastatin (open columns) to directly inhibit the catalytic
activity of human HMG-CoA reductase in the presence of increasing
concentrations of HMG-CoA substrate in a cell-free assay in vitro.
Reactions, containing 4 u1 of NADPH (to obtain a fixed final concentration
of 400 uM) and 12 ul of HMG-CoA substrate (to obtain variable final
concentrations of 400-6,400 xM) in a final volume of 0.2 ml of assay buffer,
were initiated (time 0) by the addition of 2 ul of the catalytic domain of
human recombinant HMG-CoA reductase and incubated in quartz micro-
cells at 37°C in the presence or absence (control) of 1-ul aliquots of drugs
dissolved in DMSO. The concentration of the HMG-CoA reductase stock
solution was 0.52 mg protein/ml. The rates of NADPH consumed were
calculated from the decreases in spectrophotometric absorbance at 340 nm
between 20 and 620 sec after addition of the enzyme. Results are expressed
as % of the respective control specific activities of the enzyme in the
absence of drugs (100+8.2%, striped area). The control specific activity of
HMG-CoA reductase in the presence of 400 uM HMG-CoA substrate was
0.487231+0.040148 umole of NADPH oxidized/min/mg protein. Bars,
means + SD (n=3). *Not different from control; "P<0.05, smaller than
control.
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Figure 5. Comparison of the abilities of single or combined treatments with
64 nM pravastatin or simvastatin (sodium salt) and 10 xM DL-II-D7 or GG-
II-G3 to directly inhibit the catalytic activity of human HMG-CoA reductase
in a cell-free assay in vitro. Reactions, containing 4 x1 of NADPH (to obtain
a final concentration of 400 yM) and 12 ul of HMG-CoA substrate (to
obtain a final concentration of 400 xM) in a final volume of 0.2 ml of assay
buffer, were initiated (time 0) by the addition of 2 pl of the catalytic domain
of human recombinant HMG-CoA reductase and incubated in quartz
microcells at 37°C in the presence or absence (control) of 1-1 aliquots of
drugs dissolved in DMSO. The concentration of the HMG-CoA reductase
stock solution was 0.52 mg protein/ml. The rates of NADPH consumed
were calculated from the decreases in spectrophotometric absorbance at
340 nm between 0 and 720 sec after addition of the enzyme. Results are
expressed as % of the control specific activity of the enzyme in the absence
of drugs (0.384534+0.023841 ymol of NADPH oxidized/min/mg protein,
100+6.2%, striped area). Bars, means + SD (n=3).
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Figure 6. Bound conformers of ligands interacting with the substrate binding
sites of HMG-CoA reductase, including (A) the docked conformer of DL-II-
D4, and (B) crystallographically resolved positions of mevastatin (lower
left) and NADP* (upper right) as derived by superimposing relevant crystal
structures 1HWS8 (9) and 1DQ9 (10) onto our receptor model. All ligands
are rendered as CPK-colored sticks. The receptor surface is colored as
follows: red = O, blue = polar N, cyan = polar H, white = polar alkyls, and
yellow = non-polar alkyls.

substrate block the HMG-CoA reductase-inhibiting activity
of 256 nM pravastatin without altering that of 25 yM DL-II-
D7 (Fig. 4), suggesting that MRLs and existing statins may
have different mechanisms of enzyme interaction and inhi-
bition. When tested together, suboptimal concentrations of
synthetic MRLs (10 xM DL-II-D7 or GG-II-G3) and existing
statins (64 nM pravastatin or simvastatin, sodium salt) have
additive inhibitory effects on HMG-CoA reductase activity
(Fig. 5). Preliminary molecular docking studies with MRL-
based inhibitors indicate that these ligands fit sterically well
into the HMG-CoA reductase statin-binding receptor model
(Fig. 6). Four of our MRL-based inhibitors (DL-II-D4, GG-
II-G7, GG-II-G3, DL-II-D7) were docked in the HMG-CoA
reductase receptor model via Surflex using default settings
and the protomol file defined in Materials and methods, the
strength of their interaction being in agreement with their
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Table I. Antitumor and statin-like effects of synthetic MRLs: ranking according to magnitude of HMG-CoA reductase

inhibition.
Specific activity Antiproliferative
of HMG-CoA activity in L1210
Ranking Compounds reductase® cells at day 4¢
(code No.) (% of control)® IC,, values (uM)¢
1. DL-1I-D7 323 2.30+0.17
2. GG-II-G3 434 1.43+0.07
3. GG-1I-G7 52.6 1.48+0.11
4. GG-II-Ala29 544 1.19+0.08
5. DL-II-D4 64.4 1.54+0.13
6. NB-IX-Gly27 66.6 2.13+0.08
7. NB-IX-Gly19 70.2 4.38+0.28
8. GG-1I-G4 73.1 2.67+0.20
9. NB-IX-059-N7 76.1 2.55+0.16
10. NB-IX-Gly24 764 3.74+0.20

2Comparison of the abilities of synthetic MRLs to directly inhibit the catalytic activity of HMG-CoA reductase when tested at 10 uM in a
cell-free assay in vitro. The concentration of the purified human HMG-CoA reductase stock solution was 0.85 mg protein/ml,
spectrophotometric time-scans were conducted over 640 sec, and the rates of NADPH consumed were calculated from the decrease in
absorbance at 340 nm between 20 and 300 sec after addition of the enzyme. Results are expressed as % of the control specific activity of
the enzyme in the absence of drugs (0.600528+0.039523 umole of NADPH oxidized/min/mg protein, 100+6.6%). “Concentrations of MRLs
required to inhibit by 50% (ICs, values) the metabolic activity of L1210 leukemic cells, using the MTS:PMS assay after 4 days of culture
in vitro. 1Cs, values (uM) were calculated from linear regression of the slopes of the log-transformed concentration-survival curves.

dMeans + SD (n=3).
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Figure 7. Chemical structure of 6 novel HMG-CoA reductase inhibitors that
inhibit tumor cell proliferation. The structure of 2 clinically useful statins is
shown for the sake of comparison.

activity ranking in the HMG-CoA reductase screening assay
(Fig. 2). The bound conformer of DL-II-D4 in the presence
of the HMG-CoA reductase statin-binding receptor is
rendered in Fig. 6. The parafluorobenzyl group on DL-II-D4
is positioned well to protrude through a channel delimited by
the Glu 559, Asn 658 and Pro 693 side chains, and into a
broader pocket where the aryl group can interact with the
Met 655 side chain (Fig. 6A). As seen in Fig. 6B, this
channel has been crystallographically observed to house the
pyridinium moiety on NADP* (16), and the area around Met
655 hosts the NADP* ribosyl group. As is further seen from
Fig. 6B, crystallographically characterized statins such as
mevastatin (15) do not have functional groups that occupy
this region.

Inhibition of tumor cell proliferation. Because statin drugs
that block the mevalonate pathway (19) induce pleiotropic
effects (20-22), including antitumor activity (23-26), it was
of interest to assess and compare the antiproliferative
activities of HMG-CoA reductase-inhibiting MRLs to those
of existing statins, and determine whether the ability of MRL
structures to inhibit HMG-CoA reductase activity was linked
to their effectiveness as inhibitor of tumor cell proliferation.
Interestingly, all HMG-CoA reductase-inhibiting MRL
structures inhibit the mitochondrial ability of L1210 leukemia
cells to metabolize the MTS:PMS reagent at day 4 (Fig. 7
and Table I) and the magnitude of their antitumor activity in
the low uM range is somewhat greater than that of existing
statins. Indeed, the concentration-dependent inhibitions of
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L1210 tumor cell proliferation by the 5 most effective HMG-
CoA reductase inhibitors, DL-II-D7, GG-II-G3, GG-II-G7,
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Figure 10. Chemical structures that inhibit tumor cell proliferation but not
HMG-CoA reductase activity.

—0

NB-IX-Gly35 NB-IX-Gly46

GG-II-Ala29 and DL-II-D4, similarly begin at 1.6 uM,
become maximal at 4-25 M, and are characterized by ICy,
values of 1.2-2.3 uM (Fig. 8). In contrast, concentrations of
pravastatin that totally block HMG-CoA reductase activity
(Figs. 1 and 3) are inactive against L1210 tumor cell
proliferation (Fig. 9) and mevastatin, lovastatin, simvastatin
and fluvastatin inhibit the metabolic activity of L1210 tumor
cells at day 4 with concentration-response curves that are
characterized by ICs, values of 7.4+0.3, 5.4+0.3,3.4+0.2 and
2.3+0.1 uM, respectively (Fig. 9). Sodium salts of mevastatin
(ICs5p: 5.1£0.4 uM), lovastatin (ICy,: 4.3+0.3 yM) and
simvastatin (ICs,: 2.7+0.2 uM) are not significantly more
effective against L1210 tumor cell proliferation at day 4 (data
not shown). Moreover, several other MRL structures that
inhibit L1210 tumor cell proliferation in the 470-800 nM
range fail to alter HMG-CoA reductase activity when tested
at 10 uM (Fig. 10 and Table II), suggesting that other molec-
ular targets may be involved in their antitumor action.
Different moieties of the MRL framework might be responsible
for antiproliferative activity and inhibitory interaction with
the HMG-CoA reductase enzyme. Although the correlation
between the concentration-dependent inhibitions of HMG-
CoA reductase activity over 10 min in the cell-free assay and
L1210 tumor cell proliferation over 4 days in culture is
unclear for this series of bioactive compounds, GG-II-G3 and
DL-II-D7 elicit interesting combinations of statin-like (ICs:
7.4-8.0 uM) and anti-tumor (ICs,: 1.4-2.3 uM) activities.

Discussion

Human HMG-CoA reductase, the rate-limiting enzyme in
cholesterol biosynthesis, is a transmembrane glycoprotein,
anchored to the endoplasmic reticulum, that catalyzes the
NADPH-dependent 4-electron reduction of HMG-CoA to
CoA and mevalonate (16,27,28). The active catalytic site of
the cytoplasmic, soluble carboxy-terminal portion of HMG-
CoA reductase has 3 domains which bind either the HMG
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Table II. Antitumor and statin-like effects of synthetic MRLs: ranking according to magnitude of inhibition of L1210 cell

proliferation.
Specific activity Antiproliferative
of HMG-CoA activity in L1210
Ranking Compounds reductase® cells at day 4¢
(code No.) (% of control)® IC, values (uM)¢
1. NB-IX-Gly38 104.8 0.47+0.03
2. NB-1X-Gly44 102.2 0.64+0.04
3. SE-III-525 101.1 0.68+0.04
4. SE-III-468 1029 0.80+0.05
5. NB-IX-Gly35 98.5 1.09+0.09
6. NB-IX-Gly46 104.4 1.14+0.09
7. GG-II-Ala31 859 1.16+0.06

2Comparison of the abilities of synthetic MRLs to directly inhibit the catalytic activity of HMG-CoA reductase when tested at 10 uM in a

cell-free assay in vitro. ®The conditions of the experiments and the determination of the results, expressed as % of the control specific

activity of the enzyme (ymole of NADPH oxidized/min/mg protein) in the absence of drugs, were identical to those of Table I.
‘Concentrations of MRLs required to inhibit by 50% (ICs, values) the metabolic activity of L1210 leukemic cells, using the MTS:PMS assay

after 4 days of culture in vitro. ‘Means + SD (n=3).

portion of HMG-CoA, CoA, or NADPH (19,29). Since certain
MRLs, structurally unrelated to existing statins, inhibit the
catalytic activity of purified human HMG-CoA reductase in a
cell-free assay, these bioactive compounds might represent a
novel class of HMG-CoA reductase inhibitors that can
directly interact with this enzyme to block the mevalonate
pathway and prevent hypercholesterolemia. The crystal
structures of the catalytic portion of human HMG-CoA
reductase bound to existing statins reveal that, despite their
structural diversity, all inhibitors extend into the narrow
HMG-binding pocket but not into the elongated NADPH
binding site. Current natural type 1 and synthetic type 2
statins, therefore, are all competitive inhibitors that interact at
the HMG-CoA binding site of HMG-CoA reductase because
they share a group that resembles the HMG portion of HMG-
CoA, thus sterically preventing the substrate from binding
(15,30). Active statins are administered as salts of carboxylic
acids. The lactone forms of some statins are inactive pro-
drugs that must undergo a ring-opening reaction to be
enzymatically hydrolyzed to their active hydroxyl-acid forms
by carboxy-esterases in vivo (31). The fact that, in the present
assay, there are 133- to 183-fold increases in the potencies of
lovastatin, mevastatin and simvastatin when these drugs are
tested as sodium salts confirms that current statins need to be
trans-formed into active dihydroxy open acid forms to express
their full HMG-CoA reductase-inhibiting potential in a cell-
free system.

Preliminary computational docking suggests that MRL-
based inhibitors fit sterically well into the HMG-CoA reductase
statin-binding receptor model. However, while the HMG-
CoA reductase-inhibiting activity of pravastatin is normally
overcome by HMG-CoA but not NADPH, neither increasing
concentrations of NADPH nor HMG-CoA substrates can
reverse the inhibiting effect of DL-II-D7, suggesting that
MRLs might use different mechanisms for interacting with,
disrupting and inhibiting HMG-CoA reductase. In contrast to

mevastatin, DL-II-D4 has a functional group that extends
into the narrow channel housing the pyridinium moiety on
NADP+, suggesting that the binding interaction by which
MRLs inhibit the catalytic activity of the HMG-CoA reductase
enzyme might be different from that of conventional statins.
Such MRL interference with NADPH, however, might be
irreversible and not circumvented by increasing concentration
of this substrate. The independence of pravastatin and DL-II-
D7 relative to NADPH concentration might arise from
different mechanisms: perhaps pravastatin is non-competitive
relative to NADPH, whereas DL-II-D7 and other analogs
successfully out-compete NADPH at all of the concentrations
studied. Various lipophilic groups with no substrate homo-
logy have also been suggested to play a role in determining
the mechanism of binding of HMG-CoA reductase inhibitors
(32). Moreover, the additivity of the HMG-CoA reductase-
inhibiting effects of DL-II-D7 or GG-II-G3 and pravastatin
or simvastatin (sodium salts) suggests that, even though they
are less potent, novel MRL inhibitors of HMG-CoA reductase
with a different mechanism of action might be valuable to
complement or supplement the clinical effects of the current
statins. Since existing statins share rigid, hydrophobic groups
that are covalently linked to the conserved HMG-like moiety,
the chemical functionality that enables MRL structures to
interact with and inhibit the active site of HMG-CoA reductase
must be elucidated. The kinetics of such HMG-CoA reduc-
tase inhibition by MRLs remain to be characterized but,
based on the present results, are unlikely to be similar to
those of existing statins, which, because of their shared
HMG-CoA-like moiety, are competitive with respect to
HMG-CoA and non-competitive when NADPH is varied
(27). It is worth noting that while DL-II-D4 fits sterically
well into the receptor, it can not yet be considered to be
optimized in terms of electrostatic compatibility. The strength
of the interaction is likely derived from a complementary
lipophilic interaction between the ligand benzyl group and
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the hydrophobic pocket consisting of Leu 853 and the hydro-
phobic portion of the Lys 692 side chain, plus a significant
H-bond formed between the ligand sulfonyl and the Arg 590
side chain. There may also be an oblique interaction between
the lactam carbonyl and the Asn 658 amide proton, modest
lipophilic complementarity between the anisole group and
the Cys 561 side chain, and a likely H-bond between the
anisole oxygen and the Asn 755 side chain amide proton. The
fluorobenzyl group adjacent to the sulfonyl occupies a pocket
that affords a favorable lipophilic interaction between the
aromatic ring and the Met 655 side chain, plus an opportunity
for a marginal H-bond between the fluorine and the Gly 656
backbone amide proton. Finally, the toluenyl group appears
to occupy a fairly solvent-exposed area that might be some-
what more favorable for a somewhat more polar species.

As certain MRLs are slightly more potent inhibitors of
L1210 tumor cell proliferation than existing statins, these
compounds might represent a novel synthetic class of bifunc-
tional drugs with an interesting combination of antitumor and
statin-like activities. But the relationship between the ability
of MRLs to directly inhibit HMG-CoA reductase activity
within 10 min in a cell-free assay and their effectiveness
against L1210 tumor cell proliferation after 4 days in culture
is difficult to ascertain because of the different nature of these
systems. The inhibition of cellular HMG-CoA reductase
activity by MRLs would have to be demonstrated to deter-
mine whether the disruption of the mevalonate pathway is
related to their antitumor action. In the present study, sodium
salts of existing statins inhibit the activity of the purified
HMG-CoA reductase enzyme in the nM range in the cell-free
assay but require yM treatments to prevent L1210 tumor
cells from growing in culture, and the classic HMG-CoA
reductase inhibitor pravastatin (sodium salt) is even devoid
of antiproliferative activity. Conversely, the most potent
antitumor MRLs of the series synthesized so far are effective
against L1210 tumor cell proliferation in the nM range at day
4 but are totally ineffective in the HMG-CoA reductase
activity screening assay at 10 M. Such apparent discrepancies
suggest that HMG-CoA reductase inhibition might only play
a marginal role in the antiproliferative action of various
antineoplastic therapeutics. Hence, the HMG-CoA reductase-
inhibiting potential of MRLs is unlikely to be required for
their antitumor activity and the structural functionalities
responsible for their interaction with the catalytic site of the
HMG-CoA reductase enzyme and for modulating their
antitumor potency are likely to be different.

There are at least a few superficial but possibly significant
structural correlations between the known statins and the
library of seven- and eight-membered ring compounds
evaluated for HMG-CoA reductase inhibitory activity in this
study. For example, all of the MRLs, along with the two
topologically distinct seven-membered tricyclic structures,
feature aromatic- and olefinic-rich architectures that render
them substantially lipophilic, much like the statins. Moreover,
virtually all of the tested compounds possess an electron-
poor, fluoro-substituted aromatic moiety, as do the indole-
containing fluvastatin and pyrrole-based atorvastatin (Fig. 7).
However, the substantially lower HMG-CoA reductase
inhibitory activity exhibited by all of the MRLs may be ratio-
nalized by their absence of the critical stereochemically
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defined 1,3-diol carboxylate motif that is found in all of the
clinically useful statins (or their corresponding pro-drug
lactones). Alternatively, the MRLs may exert their activity
by a completely different mechanism. It is interesting to note
that each of the MRLs possess a somewhat flattened eight-
membered unsaturated lactam core with aromatic substituents
oriented in several directions. In this respect, the nitrogen-
containing MRLs most closely resemble atorvastatin which
features a similarly planar and multi-substituted pyrrole core
(Fig. 7). Incorporating 1,3-diol carboxylate units at various
positions in the MRL scaffold offers an attractive strategy for
addressing this issue in the next-generation of compounds.
Mevalonate is a crucial intermediate for the downstream
production of cholesterol as well as non-sterol isoprenoid
compounds, such as farnesyl pyrophosphate (FPP) and
geranylgeranyl pyrophosphate (GGPP), which are vital for
the posttranslational modification (isoprenylation) required to
anchor oncogenic proteins to the inner surface of the plasma
membrane and activate their function (19,33-36). High levels
of mevalonate-derived isoprenoids implicated in oncogene
activation and tumorigenesis, such as FPP and GGPP, have
been demonstrated in malignancy (37,38). Since mevalonate-
derived cholesterol and non-sterol products may be required
to sustain tumor growth, many hyperplastic neoplastic cells
may have a greater requirement than their normal counterparts
for the synthesis of cholesterol and prenyl pyrophosphate
intermediates that may be fulfilled by an increased HMG-
CoA reductase activity (39-42). Statins, therefore, have been
suggested to exert their anticancer effects by inhibiting the
formation of mevalonate-derived farnesyl and geranylgeranyl
groups required for the isoprenylation of oncogenic proteins
as a downstream effect of HMG-CoA reductase inhibition
(23,26 43). The ability of statins to arrest cell cycle progression
at G,, increase p21WAF! and p27 expression, decrease cdk 2-
associated kinase activity, and prevent the phosphorylation of
histone-H1 and Rb is reversed by mevalonate, suggesting
that mis-sing components of the HMG-CoA reductase
pathway are responsible for cell cycle arrest by statins
(19,44-47). Statins also increase the expression of Bax and
decrease that of Bcl-2 to induce apoptosis in tumor cells and
these effects can be reversed by mevalonate and GGPP but
not FPP, suggesting that inhibition of geranylgeranylation
mediates statin-induced apoptosis (20,23,42.47 48).
Although the ability of DL-II-D7, GG-II-G3, GG-1I-G7,
GG-II-Ala29 and DL-II-D4 to inhibit the HMG-CoA
reductase-controlled production of mevalonate metabolites
required to sustain tumor cell growth might play a partial role
in their mechanism of antitumor action, it is speculated that
the lead bioactive MRLs might target other more important
molecular events, which have yet to be defined, to exert their
antitumor activity. For instance, promising antitumor MRLs
lacking HMG-CoA reductase-inhibiting activity like NB-IX-
Gly38 and NB-IX-Gly44, which inhibit macromolecule
syntheses and stimulate the formation of binucleated cells
and micronuclei, might prevent the uptake or incorporation of
precursors into DNA, RNA and proteins, and indirectly cause
chromosomal damage or missegregation to enhance mitotic
abnormality and block cytokinesis. More effective MRL
derivatives with bioactivity in the low nM range would have
to be discovered to explore structure-activity relationships,
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identify their molecular targets, elucidate their mechanism
of action and assess their preclinical potential for eventual
development as antitumor and statin-like drugs.
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