13 research outputs found

    Determining Neutrino Mass Hierarchy by Precision Measurements in Electron and Muon Neutrino Disappearance Experiments

    Get PDF
    Recently a new method for determining the neutrino mass hierarchy by comparing the effective values of the atmospheric \Delta m^2 measured in the electron neutrino disappearance channel, \Delta m^2(ee), with the one measured in the muon neutrino disappearance channel, \Delta m^2(\mu \mu), was proposed. If \Delta m^2(ee) is larger (smaller) than \Delta m^2(\mu \mu) the hierarchy is of the normal (inverted) type. We re-examine this proposition in the light of two very high precision measurements: \Delta m^2(\mu \mu) that may be accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for example, and \Delta m^2(ee) that can be envisaged using the novel Mossbauer enhanced resonant \bar\nu_e absorption technique. Under optimistic assumptions for the systematic uncertainties of both measurements, we estimate the parameter region of (\theta_13, \delta) in which the mass hierarchy can be determined. If \theta_13 is relatively large, sin^2 2\theta_13 \gsim 0.05, and both of \Delta m^2(ee) and \Delta m^2(\mu \mu) can be measured with the precision of \sim 0.5 % it is possible to determine the neutrino mass hierarchy at > 95% CL for 0.3 \pi \lsim \delta \lsim 1.7 \pi for the current best fit values of all the other oscillation parameters.Comment: 12 pages, 6 postscript figure

    The Complementarity of Eastern and Western Hemisphere Long-Baseline Neutrino Oscillation Experiments

    Get PDF
    We present a general formalism for extracting information on the fundamental parameters associated with neutrino masses and mixings from two or more long baseline neutrino oscillation experiments. This formalism is then applied to the current most likely experiments using neutrino beams from the Japan Hadron Facility (JHF) and Fermilab's NuMI beamline. Different combinations of muon neutrino or muon anti-neutrino running are considered. To extract the type of neutrino mass hierarchy we make use of the matter effect. Contrary to naive expectation, we find that both beams using neutrinos is more suitable for determining the hierarchy provided that the neutrino energy divided by baseline (E/LE/L) for NuMI is smaller than or equal to that of JHF. Whereas to determine the small mixing angle, θ13\theta_{13}, and the CP or T violating phase δ\delta, one neutrino and the other anti-neutrino is most suitable. We make extensive use of bi-probability diagrams for both understanding and extracting the physics involved in such comparisons.Comment: 21 pages, Latex, 3 postscript figure

    Parameter Degeneracies in Neutrino Oscillation Measurement of Leptonic CP and T Violation

    Get PDF
    The measurement of the mixing angle \theta_{13}, sign of \Delta m^2_{13} and the CP or T violating phase \delta is fraught with ambiguities in neutrino oscillation. In this paper we give an analytic treatment of the paramater degeneracies associated with measuring the \nu_\mu -> \nu_e probability and its CP and/or T conjugates. For CP violation, we give explicit solutions to allow us to obtain the regions where there exist two-fold and four-fold degeneracies. We calculate the fractional differences, \Delta \theta / \bar{\theta}, between the allowed solutions which may be used to compare with the expected sensitivities of the experiments. For T violation we show that there is always a complete degeneracy between solutions with positive and negative \Delta m^2_{13} which arises due to a symmetry and cannot be removed by observing one neutrino oscillation probability and its T conjugate. Thus, there is always a four fold parameter degeneracy apart from exceptional points. Explicit solutions are also given and the fractional differences are computed. The bi-probability CP/T trajectory diagrams are extensively used to illuminate the nature of the degeneracies.Comment: 35 pages, Latex, 11 postscript figures, minor correction

    Recoilless Resonant Absorption of Monochromatic Neutrino Beam for Measuring Delta m^2_{31} and theta_{13}

    Full text link
    We discuss, in the context of precision measurement of Delta m^2_{31} and theta_{13}, physics capabilities enabled by the recoilless resonant absorption of monochromatic antineutrino beam enhanced by the M\"ossbauer effect recently proposed by Raghavan. Under the assumption of small relative systematic error of a few tenth of percent level between measurement at different detector locations, we give analytical and numerical estimates of the sensitivities to Delta m^2_{31} and sin^2 2theta_{13}. The accuracies of determination of them are enormous; The fractional uncertainty in Delta m^2_{31} achievable by 10 point measurement is 0.6% (2.4%) for sin^2 2theta_{13} = 0.05, and the uncertainty of sin^2 2theta_{13} is 0.002 (0.008) both at 1 sigma CL with the optimistic (pessimistic) assumption of systematic error of 0.2% (1%). The former opens a new possibility of determining the neutrino mass hierarchy by comparing the measured value of Delta m^2_{31} with the one by accelerator experiments, while the latter will help resolving the theta_{23} octant degeneracy.Comment: 23 pages, 3 figures, version to appear in New Journal of Physic

    Neutral currents and tests of three-neutrino unitarity in long-baseline experiments

    Full text link
    We examine a strategy for using neutral current measurements in long-baseline neutrino oscillation experiments to put limits on the existence of more than three light, active neutrinos. We determine the relative contributions of statistics, cross section uncertainties, event misidentification and other systematic errors to the overall uncertainty of these measurements. As specific case studies, we make simulations of beams and detectors that are like the K2K, T2K, and MINOS experiments. We find that the neutral current cross section uncertainty and contamination of the neutral current signal by charge current events allow a sensitivity for determining the presence of sterile neutinos at the 0.10--0.15 level in probablility.Comment: 24 pages, Latex2e, uses graphicx.sty, 2 postscript figures. Submitted to the Neutrino Focus Issue of New Journal Physics at http://www.njp.or

    Current Status of the Solar Neutrino Problem with Super-Kamiokande

    Full text link
    We perform an updated model-independent analysis using the latest solar neutrino data obtained by 37^{37}Cl and 71^{71}Ga radiochemical experiments, and most notably by a large water-Cherenkov detector SuperKamiokande with their 504 days of data taking. We confirm that the astrophysical solutions to the solar neutrino problem are extremely disfavored by the data and a low-temperature modification of the standard solar model is excluded by more than 5 σ\sigma. We also propose a new way of illuminating the suppression pattern of various solar neutrino flux without invoking detailed flavor conversion mechanisms. It indicates that the strong suppression of 7^7Be neutrinos is no more true when the neutrino flavor conversion is taken into account.Comment: RevTex file, 10 pages, 7 postscript figure

    Leptonic CP Violation and Neutrino Mass Models

    Full text link
    We discuss leptonic mixing and CP violation at low and high energies, emphasizing possible connections between leptogenesis and CP violation at low energies, in the context of lepton flavour models. Furthermore we analyse weak basis invariants relevant for leptogenesis and for CP violation at low energies. These invariants have the advantage of providing a simple test of the CP properties of any lepton flavour model.Comment: 26 pages, no figures, submitted to the Focus Issue on `Neutrino Physics` edited by F. Halzen, M. Lindner and A. Suzuki, to be published in New Journal of Physic
    corecore