3 research outputs found

    Dual stimulation by autoantigen and CpG fosters the proliferation of exhausted rheumatoid factor-specific CD21low B cells in hepatitis C virus-cured mixed cryoglobulinemia

    Get PDF
    Hepatitis C virus (HCV) causes mixed cryoglobulinemia (MC) by driving clonal expansion of B cells expressing B cell receptors (BCRs), often encoded by the VH1-69 variable gene, endowed with both rheumatoid factor (RF) and anti-HCV specificity. These cells display an atypical CD21low phenotype and functional exhaustion evidenced by unresponsiveness to BCR and Toll-like receptor 9 (TLR9) stimuli. Although antiviral therapy is effective on MC vasculitis, pathogenic B cell clones persist long thereafter and can cause virus-independent disease relapses. MethodsClonal B cells from patients with HCV-associated type 2 MC or healthy donors were stimulated with CpG or heath-aggregated IgG (as surrogate immune complexes) alone or in combination; proliferation and differentiation were then evaluated by flow cytometry. Phosphorylation of AKT and of the p65 NF-kB subunit were measured by flow cytometry. TLR9 was quantified by qPCR and by intracellular flow cytometry, and MyD88 isoforms were analyzed using RT-PCR. DiscussionWe found that dual triggering with autoantigen and CpG restored the capacity of exhausted VH1-69pos B cells to proliferate. The signaling mechanism for this BCR/TLR9 crosstalk remains elusive, since TLR9 mRNA and protein as well as MyD88 mRNA were normally expressed and CpG-induced phosphorylation of p65 NF-kB was intact in MC clonal B cells, whereas BCR-induced p65 NF-kB phosphorylation was impaired and PI3K/Akt signaling was intact. Our findings indicate that autoantigen and CpG of microbial or cellular origin may unite to foster persistence of pathogenic RF B cells in HCV-cured MC patients. BCR/TLR9 crosstalk might represent a more general mechanism enhancing systemic autoimmunity by the rescue of exhausted autoreactive CD21low B cells

    Rheumatoid factor-producing CD21low anergic clonal B-cells in essential mixed cryoglobulinaemia: a model for autoantigen-driven pathogenesis of infectious and non-infectious cryoglobulinaemias

    No full text
    Objective. Essential mixed cryoglo- bulinaemia (EMC) is a disorder of B-cells producing rheumatoid factor (RF), and is clinically and immuno- logically similar to mixed cryoglobuli- naemia (MC) related to hepatitis C vi- rus (HCV-MC). We report here the first comprehensive analysis of B-cell clon- ality, phenotype and function in EMC. Methods. The study population in- cluded 16 patients with EMC and 24 patients with HCV-MC. Molecular analysis was done for the detection of circulating clonal B cells and for B cell receptor sequencing. B-cell phenotype, proliferative response, apoptosis and ERK signaling were analysed by flow cytometry. Results. Molecular analysis of im- munoglobulin genes rearrangements revealed circulating B-cell clones in about half of patients, on average of smaller size than those found in HCV-MC patients. Sequence analy- sis showed usage of the same stereo- typed RF-encoding B-cell receptors frequently expressed in HCV-MC and in primary Sjögren’s syndrome. B-cells with low expression of CD21 (CD21low) and unusual homing and inhibitory re- ceptors were increased in EMC and in HCV-MC, but at a significantly lower extent in the former. The CD21low B- cells of EMC and HCV-MC patients shared functional features of exhaus- tion and anergy, namely reduced pro- liferation upon ligation of Toll-like re- ceptor 9, high constitutive expression of phosphorylated ERK, and proneness to spontaneous apoptosis. Conclusion. Our findings suggest a common pathogenetic mechanism in EMC, HCV-MC and primary Sjögren’ssyndrome, consisting of autoantigen- driven clonal expansion and exhaus- tion of selected RF-producing B-cells. The more massive clonal expansion in HCV-MC may be due to co-stimulatory signals provided by the virus

    DataSheet_1_Dual stimulation by autoantigen and CpG fosters the proliferation of exhausted rheumatoid factor-specific CD21low B cells in hepatitis C virus-cured mixed cryoglobulinemia.docx

    No full text
    IntroductionHepatitis C virus (HCV) causes mixed cryoglobulinemia (MC) by driving clonal expansion of B cells expressing B cell receptors (BCRs), often encoded by the VH1-69 variable gene, endowed with both rheumatoid factor (RF) and anti-HCV specificity. These cells display an atypical CD21low phenotype and functional exhaustion evidenced by unresponsiveness to BCR and Toll-like receptor 9 (TLR9) stimuli. Although antiviral therapy is effective on MC vasculitis, pathogenic B cell clones persist long thereafter and can cause virus-independent disease relapses.MethodsClonal B cells from patients with HCV-associated type 2 MC or healthy donors were stimulated with CpG or heath-aggregated IgG (as surrogate immune complexes) alone or in combination; proliferation and differentiation were then evaluated by flow cytometry. Phosphorylation of AKT and of the p65 NF-kB subunit were measured by flow cytometry. TLR9 was quantified by qPCR and by intracellular flow cytometry, and MyD88 isoforms were analyzed using RT-PCR.DiscussionWe found that dual triggering with autoantigen and CpG restored the capacity of exhausted VH1-69pos B cells to proliferate. The signaling mechanism for this BCR/TLR9 crosstalk remains elusive, since TLR9 mRNA and protein as well as MyD88 mRNA were normally expressed and CpG-induced phosphorylation of p65 NF-kB was intact in MC clonal B cells, whereas BCR-induced p65 NF-kB phosphorylation was impaired and PI3K/Akt signaling was intact. Our findings indicate that autoantigen and CpG of microbial or cellular origin may unite to foster persistence of pathogenic RF B cells in HCV-cured MC patients. BCR/TLR9 crosstalk might represent a more general mechanism enhancing systemic autoimmunity by the rescue of exhausted autoreactive CD21low B cells.</p
    corecore