12 research outputs found

    Méthodes d'ondelettes en statistique des signaux temporels uni et multivariés

    No full text
    Cette thèse se situe dans le domaine de la statistique et porte, pour l'essentiel, sur les applications des ondelettes pour le traitement des signaux temporels univariés et multivariés. Dans une première partie, nous nous intéressons à une extension au cas multivarié, des procédures de débruitage par ondelettes, bien connues pour les signaux unidimensionnels. Cette nouvelle procédure combine l'analyse en composantes principales avec une généralisation directe au cas dimensionnel d'une stratégie classique de bruitage 1-D. L'idée est de changer de base en diagonalisant un estimateur robuste de la covariance du bruit, afin de décorréler les composantes du bruit affectant les signaux puis d'appliquer un débruitage univarié par ondelettes classique avant de faire une ACP sur les signaux simplifiés ainsi reconstitués ou sur les coefficients d'approximation. Dans une deuxième partie, nous nous intéressons particulièrement au problème de la prévision d'une série unidimensionnelle stationnaire ou non, à l'aide de la transformée en ondelettes non-décimée. Il s'agit de généraliser une procédure dont le principe est de sélectionner des coefficients d'ondelettes construits à partir des observations du passé puis d'estimer directement l'équation de prévision par la régression du processus sur les coefficients d'ondelettes du passé. Ce schéma est étendu à une ondelette orthogonale quelconque, à la prise en compte d'une composante non-stationnaire et de nombreuses variantes sont étudiées. Une dernière partie porte sur un thème un peu différent des autres, puisque les ondelettes n'y jouent pas un rôle prépondérant. Elle consiste à une approche bayésienne pour choisir une loi a priori et on peut la considérer comme une alternative aux proches paramétriques de la méthode de Bayes empirique pour le choix de l'a priori. Cette méthode peut s'appliquer au choix de la densitéa prior des coefficients d'ondelettes dans les méthodes de seuillage.This thesis takes place in statistics and deals with the applications of wavelets to the univariate and multivariate signals. The first part is devoted to a multivariate extension of the well known wavelet denoising procedure widely examined for scalar valued signals. It combines a straightforward multivariate generalization of a classical one and principal component analysis. This new procedure exhibits promising behavior on classical bench signals and the associated estimator is found to be near minimax in the one-dimensional sense, for Besov balls. The method is finally illustrated by an application to multichannel neural recordings.The second part is devoted to the forecasting problem of a stationary or non-stationary one dimensional time series, using non-decimated wavelet transform. A new proposal method to prediction stationary data and stationary data contaminated by additive trend is proposed. It consists of generalizing a procedure whose idea is to select the wavelet coefficients built from the past observations then to directly estimate the forecasting equation by the regression of the process on the past wavelet coefficients. This scheme is extended to an arbitrary orthogonal wavelet and to the introduction a non-stationary component. The third part relates to a topic a little bit different from the others. We introduce a method for prior selection. This method can be considered as an alternative approach to the parametric empirical Bayes method for priorselection and can then be applied to the choice of threshold in the denoising procedure using wavelets.ORSAY-PARIS 11-BU Sciences (914712101) / SudocORSAY-PARIS 11-Bib. Maths (914712203) / SudocSudocFranceF

    Multistep Forecasting Non-Stationary Time Series using Wavelets and Kernel Smoothing

    No full text
    International audienceThe authors deal with forecasting nonstationary time series using wavelets and kernel smoothing. Starting from a basic forecasting procedure based on the regression of the process on the nondecimated Haar wavelet coefficients of the past, the procedure was extended in various directions, including the use of an arbitrary wavelet or polynomial fitting for extrapolating low-frequency components. The authors study a further generalization of the prediction procedure dealing with multistep forecasting and combining kernel smoothing and wavelets. They finally illustrate the proposed procedure on nonstationary simulated and real data and then compare it to well-known competitors

    FORECASTING TIME SERIES USING WAVELETS

    No full text

    Solving Noisy ICA Using Multivariate Wavelet Denoising with an Application to Noisy Latent Variables Regression

    No full text
    Special Issue: Advances in Probability and StatisticsInternational audienceA novel approach to solve the independent component analysis (ICA) model in the presence of noise is proposed. We use wavelets as natural denoising tools to solve the noisy ICA model. To do this, we use a multivariate wavelet denoising algorithm allowing spatial and temporal dependency. We propose also using a statistical approach, named nested design of experiments, to select the parameters such as wavelet family and thresholding type. This technique helps us to select more convenient combination of the parameters. This approach could be extended to many other problems in which one needs to choose parameters between many choices. The performance of the proposed method is illustrated on the simulated data and promising results are obtained. Also, the suggested method applied in latent variables regression in the presence of noise on real data. The good results confirm the ability of multivariate wavelet denoising to solving noisy ICA

    Multivariate Denoising Using Wavelets and Principal Component Analysis

    No full text
    International audienceA multivariate extension of the well known wavelet denoising procedure widely examined for scalar valued signals, is proposed. It combines a straightforward multivariate generalization of a classical one and principal component analysis. This new procedure exhibits promising behavior on classical bench signals and the associated estimator is found to be near minimax in the one-dimensional sense, for Besov balls. The method is finally illustrated by an application to multichannel neural recordings

    A modified two-sample t

    No full text

    A modified F

    No full text
    corecore