3,852 research outputs found

    Effect of natural antioxidants on the aggregation and disaggregation of beta-amyloid

    Get PDF
    Purpose: To examine the relationship between higher antioxidant activity and aggregation or disaggregation of beta-amyloid (Aβ) for 21 plants.Methods: Twenty-nine natural plant extracts and their antioxidant activities were analyzed using DPPH assay. The aggregation and disaggregation of Aβ were analyzed using Thioflavin-T assay.Results: Eleven plant extracts exhibited high antioxidant activities with the half-maximal inhibitory concentration (IC50) values < 20.0 μg/mL. Furthermore, the plant extracts efficiently inhibited Aβ aggregation with a mean IC50 value of 17.0 μg/mL. However, four plant extracts exhibiting low antioxidant activities (IC50 > 80.0 μg/mL) inhibited Aβ aggregation less efficiently with a mean IC50 value of 75.7 μg/mL. Furthermore, plant extracts with high antioxidant activities were not invariably efficient for disaggregating pre-formed Aβ aggregates.Conclusion: High antioxidant activities were positively correlated with the inhibition of Aβ aggregation, although not with the disaggregation of pre-formed Aβ aggregates. Nevertheless, potent antioxidants may be helpful in treating Alzheimer’s disease.Keywords: Alzheimer’s disease, β-Amyloid, Aggregation, Disaggregation, Antioxidant

    1,4-Bis(4-pyridylsulfanylmeth­yl)benzene

    Get PDF
    In the title compound, C18H16N2S2, a crystallographic inversion centre lies at the centre of the benzene ring, and the two terminal 4-mercaptopyridyl groups adopt an anti geometry. Each benzene ring makes a dihedral angle of 55.4 (1)° with the plane of the benzene fragment. The crystal structure is stabilized by C—H⋯π inter­actions between a benzene H atom and a pyridyl ring of a neighbouring mol­ecule. In addition, the crystal structure exhibits inter­molecular C—H⋯N inter­actions

    The association between motor capacity and motor performance in school-aged children with cerebral palsy: An observational study

    Get PDF
    Background This study aimed to investigate the association between motor capacity and motor performance in children with cerebral palsy (CP) aged 6–12 years with Gross Motor Function Classification System (GMFCS) levels I to III. Methods Forty-six children with CP (24 boys and 22 girls) classified as GMFCS levels Ⅰ, Ⅱ, or Ⅲ were included. Motor capacity was measured by the Gross motor function measure (GMFM), Pediatric balance scale (PBS), Timed up and go (TUG), and 6-min walk test (6MWT). Motor performance was measured by triaxial accelerometers. Estimations of physical activity energy expenditure (PAEE) (kcal/kg/day), percentage of time spent on physical activity (% sedentary physical activity; %SPA; % light physical activity, %LPA; % moderate physical activity, %MPA; % vigorous physical activity %VPA; and moderate-to-vigorous physical activity, %MVPA), and activity counts (counts/minute) were obtained. Results Children with GMFCS level I showed a significantly higher motor capacity (GMFM-66, GMFM-88, D-dimension and E-dimension, PBS and 6MWT) than those with level II or III. Children with GMFCS level II and/or III had significantly lower physical activity (PAEE, % MPA, % VPA, %MVPA, and activity counts) than children with GMFCS level I. Multiple linear regression analysis (dependent variable, GMFM-66) showed that %MVPA was positively associated with GMFM-66 in the GMFCS level II & III children but not in GMFCS level I children

    Effect of cytokinins on growth and phenylpropanoid accumulation in Tartary buckwheat sprouts (Fagopyrum esculentum Moench)

    Get PDF
    This study analyzed the effect of plant hormones, zeatin, 6-benzyl amino purine (BAP), kinetin, and thidiazuron (TDZ) on the growth of Tartary buckwheat sprouts and analyzed the fresh weight, shoot and root length, and production of phenolic compounds. All the hormone-treated plants at the lowest concentration (0.1 mg/L) showed the highest levels of growth parameters (fresh weight, shoot, and root length) when compared to the control. Among the various hormones treatment, the plant treated with 1 mg/L of BAP, kinetin, and zeatin showed the highest total phenolic level, whereas the TDZ showed the highest accumulation of total phenolic at the lowest concentration (0.1 mg/L). A total of 6 compounds were identified (4-hydroxybenzoic acid, caffeic acid, chlorogenic acid, p-coumaric acid, rutin, and trans-cinnamic acid) were quantified by high liquid performance chromatography (HPLC) after treatment of plant with different concentrations of hormones. Among these individual phenolic compounds, at the higher hormonal concentration (1 mg/L) the rutin showed the highest accumulation in BAP, zeatin, and kinetin treated sprout, whereas in the TDZ treated sprout the rutin content was highest at the lowest concentration (0.1 mg/L). From these results, it is suggested that BAP, zeatin, and kinetin at the lowest concentrations might positively enhance the growth of buckwheat sprouts, whereas at the highest hormonal treatment the accumulation of the phenolic compounds was higher. However, in TDZ treatment the growth and phenolic compound accumulation were highest at the lowest concentration. From these results, it is showed that suitable concentrations might enhance the growth and phenolic compound accumulation in Tatary buckwheat sprout

    System Coverage and Capacity Analysis on Millimeter-Wave Band for 5G Mobile Communication Systems with Massive Antenna Structure

    Get PDF
    The use of a millimeter-wave band defined as a 30–300 GHz range is significant element for improving performance of 5th generation (5G) mobile communication systems. However, since the millimeter-wave signal has peculiar propagation characteristics especially toward non-line-of-sight regions, the system architecture and antenna structure for 5G mobile communications should be designed to overcome these propagation limitations. For realization of the 5G mobile communications, electronics and telecommunications research institute (ETRI) is developing central network applying various massive antenna structures with beamforming. In this paper, we have introduced the central network and evaluated the system coverage and capacity through C++ language-based simulations with real geospatial information

    Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis

    Get PDF
    AbstractTo determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng

    Phytosynthesis of Silver and Gold Nanoparticles Using the Hot Water Extract of Mixed Woodchip Powder and Their Antibacterial Efficacy

    Get PDF
    This study investigates the phytosynthesis, characterization, and antibacterial efficacy of silver and gold nanoparticles (NPs) produced using the hot water extract of mixed woodchip powder. The woodchip extract (WCE) was successfully used as both a reducing and stabilizing agent for the phytosynthesis of both crystalline metal NPs. The effects of different physicochemical factors affecting the formation of the metal NPs including reaction pH, concentration of the precursor metal salts, amount of WCE, and external energy input were evaluated. The characterization of the metal NPs was performed by transmission electron microscopy, selected area electron diffraction (SAED), energy dispersive X-ray (EDX) spectroscopy, and X-ray diffraction (XRD) pattern analysis. In addition, the antibacterial efficacy of the phytosynthesized NPs was measured. The AgNPs showed clear antibacterial activity against four representative bacterial strains. However, the AuNPs did not exhibit bactericidal activity, probably due to their surface modifications and relatively large size. These results suggest that the phytosynthesis of the metal NPs using WCE is highly efficient, and its convenience makes it suitable for use in large-scale production
    corecore