7,487 research outputs found

    Communication with SIMP dark mesons via Z'-portal

    Get PDF
    We consider a consistent extension of the SIMP models with dark mesons by including a dark U(1)_D gauge symmetry. Dark matter density is determined by a thermal freeze-out of the 3→23\to2 self-annihilation process, thanks to the Wess-Zumino-Witten term. In the presence of a gauge kinetic mixing between the dark photon and the SM hypercharge gauge boson, dark mesons can undergo a sufficient scattering off the Standard Model particles and keep in kinetic equilibrium until freeze-out in this SIMP scenario. Taking the SU(N_f)xSU(N_f)/SU(N_f) flavor symmetry under the SU(N_c) confining group, we show how much complementary the SIMP constraints on the parameters of the dark photon are for current experimental searches for dark photon.Comment: 16 pages, 6 figures, To appear in Phys. Lett.

    SIMP dark matter and its cosmic abundances

    Get PDF
    We give a review on the thermal average of the annihilation cross-sections for 3→23\rightarrow 2 and general higher-order processes. Thermal average of higher order annihilations highly depend on the velocity of dark matter, especially, for the case with resonance poles. We show such examples for scalar dark matter in gauged Z3Z_3 models.Comment: 5 pages, 2 figures, Prepared for the proceedings of the 13th International Conference on Gravitation, 3-7 July 201

    Cosmic abundances of SIMP dark matter

    Get PDF
    Thermal production of light dark matter with sub-GeV scale mass can be attributed to 3→23\rightarrow 2 self-annihilation processes. We consider the thermal average for annihilation cross sections of dark matter at 3→23\rightarrow 2 and general higher-order interactions. A correct thermal average for initial dark matter particles is important, in particular, for annihilation cross sections with overall velocity dependence and/or resonance poles. We apply our general results to benchmark models for SIMP dark matter and discuss the effects of the resonance pole in determining the relic density.Comment: 21 pages, 6 figures, Version to appear in Journal of High Energy Physic

    Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting

    Get PDF
    “Rainbow trapping” has been proposed as a scheme for localized storage of broadband electromagnetic radiation in metamaterials and plasmonic heterostructures. Here, we articulate the dispersion and power flow characteristics of rainbow trapping structures, and show that tapered waveguide structures composed of dielectric core and metal cladding are best suited for light trapping. A metal-insulator-metal taper acts as a cascade of optical cavities with different resonant frequencies, exhibiting a large quality factor and small effective volume comparable to conventional plasmonic resonators

    Consistency relations in multi-field inflation

    Full text link
    We study the consequences of spatial coordinate transformation in multi-field inflation. Among the spontaneously broken de Sitter isometries, only dilatation in the comoving gauge preserves the form of the metric and thus results in quantum-protected Slavnov-Taylor identities. We derive the corresponding consistency relations between correlation functions of cosmological perturbations in two different ways, by the connected and one-particle-irreducible Green's functions. The lowest-order consistency relations are explicitly given, and we find that even in multi-field inflation the consistency relations in the soft limit are independent of the detail of the matter sector.Comment: 24 pages, version to appear in JCA

    Quantum non-linear evolution of inflationary tensor perturbations

    Full text link
    We study the quantum mechanical evolution of the tensor perturbations during inflation with non-linear tensor interactions. We first obtain the Lindblad terms generated by non-linear interactions by tracing out unobservable sub-horizon modes. Then we calculate explicitly the reduced density matrix for the super-horizon modes, and show that the probability of maintaining the unitarity of the squeezed state decreases in time. The decreased probability is transferred to other elements of the reduced density matrix including off-diagonal ones, so the evolution of the reduced density matrix describes the quantum-to-classical transition of the tensor perturbations. This is different from the classicality accomplished by the squeezed state, the suppression of the non-commutative effect, which is originated from the quadratic, linear interaction, and also maintains the unitarity. The quantum-to-classical transition occurs within 5 - 10 e-folds, faster than the curvature perturbation.Comment: (v1) 39 pages, (v2) typos corrected, to be published in Journal of High Energy Physic
    • …
    corecore