2 research outputs found

    High Performance LiMn<sub>2</sub>O<sub>4</sub> Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries

    No full text
    Tremendous research works have been done to develop better cathode materials for a large scale battery to be used for electric vehicles (EVs). Spinel LiMn<sub>2</sub>O<sub>4</sub> has been considered as the most promising cathode among the many candidates due to its advantages of high thermal stability, low cost, abundance, and environmental affinity. However, it still suffers from the surface dissolution of manganese in the electrolyte at elevated temperature, especially above 60 °C, which leads to a severe capacity fading. To overcome this barrier, we here report an imaginative material design; a novel heterostructure LiMn<sub>2</sub>O<sub>4</sub> with epitaxially grown layered (<i>R</i>3̅<i>m</i>) surface phase. No defect was observed at the interface between the host spinel and layered surface phase, which provides an efficient path for the ionic and electronic mobility. In addition, the layered surface phase protects the host spinel from being directly exposed to the highly active electrolyte at 60 °C. The unique characteristics of the heterostructure LiMn<sub>2</sub>O<sub>4</sub> phase exhibited a discharge capacity of 123 mAh g<sup>–1</sup> and retained 85% of its initial capacity at the elevated temperature (60 °C) after 100 cycles

    Low-Temperature Carbon Coating of Nanosized Li<sub>1.015</sub>Al<sub>0.06</sub>Mn<sub>1.925</sub>O<sub>4</sub> and High-Density Electrode for High-Power Li-Ion Batteries

    No full text
    Despite their good intrinsic rate capability, nanosized spinel cathode materials cannot fulfill the requirement of high electrode density and volumetric energy density. Standard carbon coating cannot be applied on spinel materials due to the formation of oxygen defects during the high-temperature annealing process. To overcome these problems, here we present a composite material consisting of agglomerated nanosized primary particles and well-dispersed acid-treated Super P carbon black powders, processed below 300 °C. In this structure, primary particles provide fast lithium ion diffusion in solid state due to nanosized diffusion distance. Furthermore, uniformly dispersed acid-treated Super P (ASP) in secondary particle facilitates lower charge transfer resistance and better percolation of electron. The ASPLMO material shows superior rate capability, delivering 101 mAh g<sup>–1</sup> at 300 C-rate at 24 °C, and 75 mAh g<sup>–1</sup> at 100 C-rate at −10 °C. Even after 5000 cycles, 86 mAh g<sup>–1</sup> can be achieved at 30 C-rate at 24 °C, demonstrating very competitive full-cell performance
    corecore