4,159 research outputs found

    Natural durability of some hardwoods imported into korea for deck boards against decay fungi and subterranean termite in accelerated laboratory tests

    Get PDF
    This study evaluated the natural durability of seven imported hardwoods (bangkirai, burckella, ipe, jarrah, kempas, malas, and merbau) used for deck boards against decay fungi (Fomitopsis palustris, Gloeophyllum trabeum, Trametes versicolor, and Irpex lacteus) and the subterranean termite (Reticulitermes speratus kyushuensis) in accelerated laboratory tests. Ipe, jarrah, and merbau were very durable to fungal attack, with performance comparable to ACQ-treated wood. Bangkirai, burckella, kempas, and malas were classified as durable or moderately durable, depending on the fungal species tested. All wood species except for merbau were highly resistant to termite attack. Termite resistance was similar to ACQ-treated wood. Merbau showed somewhat less than all other species but still significant termite resistance. These results indicated that selected naturally durable hardwood species could inhibit fungal and termite attacks as effectively as ACQ treatment. The natural durability of wood species tested in this study is most likely due to the biocidal extractive content of the wood

    Microspinning: Local Surface Mixing via Rotation of Magnetic Microparticles for Efficient Small-Volume Bioassays

    Get PDF
    The need for high-throughput screening has led to the miniaturization of the reaction volume of the chamber in bioassays. As the reactor gets smaller, surface tension dominates the gravitational or inertial force, and mixing efficiency decreases in small-scale reactions. Because passive mixing by simple diffusion in tens of microliter-scale volumes takes a long time, active mixing is needed. Here, we report an efficient micromixing method using magnetically rotating microparticles with patterned magnetization induced by magnetic nanoparticle chains. Because the microparticles have magnetization patterning due to fabrication with magnetic nanoparticle chains, the microparticles can rotate along the external rotating magnetic field, causing micromixing. We validated the reaction efficiency by comparing this micromixing method with other mixing methods such as simple diffusion and the use of a rocking shaker at various working volumes. This method has the potential to be widely utilized in suspension assay technology as an efficient mixing strategy
    corecore