13,444 research outputs found
Antiferromagnetic and structural transitions in the superoxide KO2 from first principles: A 2p-electron system with spin-orbital-lattice coupling
KO2 exhibits concomitant antiferromagnetic (AFM) and structural transitions,
both of which originate from the open-shell 2p electrons of O
molecules. The structural transition is accompanied by the coherent tilting of
O molecular axes. The interplay among the spin-orbital-lattice
degrees of freedom in KO2 is investigated by employing the first-principles
electronic structure theory and the kinetic-exchange interaction scheme. We
have shown that the insulating nature of the high symmetry phase of KO2 at high
temperature (T) arises from the combined effect of the spin-orbit coupling and
the strong Coulomb correlation of O 2p electrons. In contrast, for the low
symmetry phase of KO2 at low T with the tilted O molecular axes, the
band gap and the orbital ordering are driven by the combined effects of the
crystal-field and the strong Coulomb correlation. We have verified that the
emergence of the O 2p ferro-orbital ordering is essential to achieve the
observed AFM structure for KO2
Correlated Electronic Structures and the Phase Diagram of Hydrocarbon-based Superconductors
We have investigated correlated electronic structures and the phase diagram of electron-doped hydrocarbon molecular solids, based on the dynamical mean-field theory. We have found that the ground state of hydrocarbon-based superconductors such as electron-doped picene and coronene is a multi-band Fermi liquid, while that of non-superconducting electron-doped pentacene is a single-band Fermi liquid in the proximity of the metal-insulator transition. The size of the molecular orbital energy level splitting plays a key role in producing the superconductivity of electron-doped hydrocarbon solids. The multi-band nature of hydrocarbon solids would boost the superconductivity through the enhanced density of states at the Fermi level.X11910sciescopu
- …