research

Antiferromagnetic and structural transitions in the superoxide KO2 from first principles: A 2p-electron system with spin-orbital-lattice coupling

Abstract

KO2 exhibits concomitant antiferromagnetic (AFM) and structural transitions, both of which originate from the open-shell 2p electrons of O2_{2}^{-} molecules. The structural transition is accompanied by the coherent tilting of O2_{2}^{-} molecular axes. The interplay among the spin-orbital-lattice degrees of freedom in KO2 is investigated by employing the first-principles electronic structure theory and the kinetic-exchange interaction scheme. We have shown that the insulating nature of the high symmetry phase of KO2 at high temperature (T) arises from the combined effect of the spin-orbit coupling and the strong Coulomb correlation of O 2p electrons. In contrast, for the low symmetry phase of KO2 at low T with the tilted O2_{2}^{-} molecular axes, the band gap and the orbital ordering are driven by the combined effects of the crystal-field and the strong Coulomb correlation. We have verified that the emergence of the O 2p ferro-orbital ordering is essential to achieve the observed AFM structure for KO2

    Similar works

    Full text

    thumbnail-image

    Available Versions