5,659 research outputs found

    Plasmonic Terahertz Detector Based on Asymmetric Silicon Field-Effect Transistor for Real-Time Terahertz Imaging System

    Get PDF
    Department of Electrical EngineeringTerahertz (THz) technology has a great potential application owing to the unique properties of THz wave that has both permeability and feature of straight. Among the various technology in THz frequency range, THz imaging technology is very promising and attractive owing to harmlessness in human body by very low energy. In particular, for real-time THz imaging detectors, field-effect transistor (FET)-based THz detectors are now being intensively developed in multi-pixel array configuration by exploiting the silicon (Si) technology advantages of low-cost and high density integration. FET-based plasmonic wave detection mechanism, which is not limited by cut-off frequency as in transit-mode, has attractive features such as enhanced responsivity (Rv) according to frequency increase in THz range and robustness to high THz input power. To analyze the operation principle of plasmonic THz detector, an analytical device model has been implemented in terms of device physics. The non-resonant and ???overdamped??? plasma-wave behaviors have been modeled by introducing a quasi-plasma electron charge box as a two-dimensional electron gas (2DEG) in the channel region only around the source side of Si FETs. Based on the coupled non-resonant plasma-wave physics and continuity equation on the technology computer-aided design (TCAD) platform, the alternate-current (ac) signal as an incoming THz wave radiation successfully induced a direct-current (dc) drain-to-source output voltage as a detection signal in a sub-THz frequency regime under the asymmetric boundary conditions between source and drain. The significant effects of asymmetric source and drain structure, channel shape on the charge asymmetry and performance enhancement have been analytically investigated based on non-resonant plasmonic THz detection theory. By designing and fabricating an asymmetric transistor integrated with antenna, more enhanced channel charge asymmetry has been obtained for enhanced detection response. Through verification of the advanced non-quasi-static (NQS) compact model, the intrinsic FET delay and total detector delay in THz plasmonic detection are successfully characterized and are small enough to guarantee a real-time operating detector. These results can provide that the real-time THz imaging of moving objects has been experimentally demonstrated based on plasmonic 1x200 array scanner by using the high/fast detecting performance asymmetric FET and multiplexer/amplifier circuits. The highly-enhanced Rv and reduced noise equivalent power (NEP) have been demonstrated by exploiting monolithic transistor-antenna device considering impedance matching between transistor and antenna. This record-high enhancement is due to antenna mismatching and feeding line loss reduction as well as the enhanced charge asymmetry in the proposed monolithic transistor-antenna device. Therefore, high-performance plasmonic THz detector based on asymmetric Si FET can compete as commercial THz detector by taking advantages of monolithic device technology for real-time THz imaging system.ope

    Improving Web Site Structure to Facilitate Effective User Navigation

    Get PDF
    Web sites are most effective when they meet both the contents and usability needs of their users. It is revealed, however, that designing usable Web sites is not a trivial task. A primary reason is that Web developersā€™ perceptions and knowledge can be very different from those of the target users. Such differences result in cases in which users cannot easily locate the relevant information in a Web site. In this paper, we propose a math programming model to improve the navigation effectiveness of a Web site while preserving its original structure whenever possible. Our approach minimizes unnecessary changes to the present structure of a Web site and hence can be applied for Web site maintenance on a regular basis. Our test on a real Web site shows that the approach can provide significant improvements over the Web site structure by introducing only a small number of new links
    • ā€¦
    corecore