3,693 research outputs found
Factors Affecting the Extrusion Rate of Ventilation Tubes
ObjectivesThe objective of this study was to determine the various factors that affect the extrusion rate of ventilation tubes (VTs), including the nature of the middle ear effusion.MethodsA retrospective chart review of 82 pediatric patients (177 ears) who received VT insertion surgery under general anesthesia was carried out to evaluate the relationship between various factors and the VT extrusion rate. The factors we analyzed included age, gender, the adenoid size, the amount and content of the middle ear effusion after myringotomy, bleeding events, associated adenoidectomy and the findings of the tympanic membrane status, the tympanometry and the audiometry of the air bone gap.ResultsThe mean extrusion time was 254 days (range, 11 to 809 days). The patients with no history of previous VT insertion had a longer extrusion time (mean, 279 days) than did the patients who had undergone previous VT insertion (mean, 203 days). The patients with serous effusion had the shortest extrusion time (mean, 190 days) as compared to those patients with glue (273 days) and pus (295 days) effusions. Other factors had no statistical significant relationship with the extrusion time.ConclusionThe mean VT extrusion time was 254 days. The VT extrusion time was significantly related to the characteristics of the middle ear effusion and a history of previous VT insertion. Thus, the nature of middle ear effusion can provide a clinical clue to predict the VT extrusion time
Development of a hybrid magnetic resonance/computed tomography-compatible phantom for magnetic resonance guided radiotherapy
The purpose of the present study was to develop a hybrid magnetic resonance/computed tomography (MR/CT)-compatible phantom and tissue-equivalent materials for each MR and CT image. Therefore, the essential requirements necessary for the development of a hybrid MR/CT-compatible phantom were determined and the development process is described. A total of 12 different tissue-equivalent materials for each MR and CT image were developed from chemical components. The uniformity of each sample was calculated. The developed phantom was designed to use 14 plugs that contained various tissue-equivalent materials. Measurement using the developed phantom was performed using a 3.0-T scanner with 32 channels and a Somatom Sensation 64. The maximum percentage difference of the signal intensity (SI) value on MR images after adding K2CO3 was 3.31%. Additionally, the uniformity of each tissue was evaluated by calculating the percent image uniformity (%PIU) of the MR image, which was 82.18 ±1.87% with 83% acceptance, and the average circular-shaped regions of interest (ROIs) on CT images for all samples were within ±5 Hounsfield units (HU). Also, dosimetric evaluation was performed. The percentage differences of each tissue-equivalent sample for average dose ranged from -0.76 to 0.21%. A hybrid MR/CT-compatible phantom for MR and CT was investigated as the first trial in this field of radiation oncology and medical physics
A Study on GBW-KNN Using Statistical Testing
In the 4th industrial revolution, big data and artificial intelligence are becoming more and more important. This is because the value can be four by applying artificial intelligence techniques to data generated and accumulated in real-time. Various industries utilize them to provide a variety of services and products to customers and enhance their competitiveness. The KNN algorithm is one of such analysis methods, which predicts the class of an unlabeled instance by using the classes of nearby neighbors. It is used a lot because it is simpler and easier to understand than other methods. In this study, we proposed a GBW-KNN algorithm that finds KNN after assigning weights to each individual based on the KNN graph. In addition, a statistical test was conducted to see if there was a significant difference in the performance difference between the KNN and GBW-KNN methods. As a result of the experiment, it was confirmed that the performance of GBW-KNN was excellent overall, and the difference in performance between the two methods was significant
Staphylococcal enterotoxin sensitization in a community-based population : a potential role in adult-onset asthma
Background: Recent studies suggest that Staphylococcus aureus enterotoxin sensitization is a risk factor for asthma. However, there is a paucity of epidemiologic evidence on adult-onset asthma in community-based populations.
Objective: We sought to evaluate the epidemiology and the clinical significance of staphylococcal enterotoxin sensitization in community-based adult populations.
Methods: The present analyses were performed using the baseline data set of Korean adult population surveys, consisting of 1080 adults (mean age=60.2years) recruited from an urban and a rural community. Questionnaires, methacholine challenge tests, and allergen skin tests were performed for defining clinical phenotypes. Sera were analysed for total IgE and enterotoxin-specific IgE using ImmunoCAP.
Results: Staphylococcal enterotoxin sensitization (0.35kU/L) had a prevalence of 27.0%. Risk factors were identified as male sex, current smoking, advanced age (61years), and inhalant allergen sensitization. Current asthma was mostly adult onset (18years old) and showed independent associations with high enterotoxin-specific IgE levels in multivariate logistic regression tests. In multivariate linear regressions, staphylococcal enterotoxin-specific IgE level was identified as the major determinant factor for total IgE level.
Conclusions and Clinical Relevance: Staphylococcal enterotoxin sensitization was independently associated with adult-onset asthma in adult community populations. Strong correlations between the enterotoxin-specific IgE and total IgE levels support the clinical significance. The present findings warrant further studies for the precise roles of staphylococcal enterotoxin sensitization in the asthma pathogenesis
Peccei-Quinn Inflation at the Pole and Axion Kinetic Misalignment
We propose a minimal extension of the Standard Model with the Peccei-Quinn
(PQ) scalar field and explain the relic density of the QCD axion through the
kinetic misalignment with a relatively small axion decay constant. To this
purpose, we consider a slow-roll inflation from the radial component of the PQ
field with the PQ conserving potential near the pole of its kinetic term and
investigate the post-inflationary dynamics of the PQ field for reheating. The
angular mode of the PQ field, identified with the QCD axion, receives a nonzero
velocity during inflation due to the PQ violating potential, evolving with an
approximately conserved Noether PQ charge. We determine the reheating
temperature from the perturbative decays and scattering processes of the
inflaton and obtain dark radiation from the axions produced from the inflaton
scattering at a testable level in the future Cosmic Microwave Background
experiments. We show the correlation between the reheating temperature, the
initial velocity of the axion and the axion decay constant, realizing the axion
kinetic misalignment for the correct relic density.Comment: 25 pagesm 3 figure
Revival of the side-to-side approach for distal coronary anastomosis
Side-to-side anastomosis was employed by just ten proportional stitches while performing distal anastomosis during coronary artery surgery. This technique is simple and quick. Here this simple technique is described in detail and the postoperative status of grafted conduits is reported
Synthesis of High Crystalline Al-Doped ZnO Nanopowders from Al 2
High crystalline Al-doped ZnO (AZO) nanopowders were prepared by in-flight treatment of ZnO and Al2O3 in Radio-Frequency (RF) thermal plasma. Micron-sized (~1 μm) ZnO and Al2O3 powders were mixed at Al/Zn ratios of 3.3 and 6.7 at.% and then injected into the RF thermal plasma torch along the centerline at a feeding rate of 6.6 g/min. The RF thermal plasma torch system was operated at the plate power level of ~140 kVA to evaporate the mixture oxides and the resultant vapor species were condensed into solid particles by the high flow rate of quenching gas (~7000 slpm). The FE-SEM images of the as-treated powders showed that the multipod shaped and the whisker type nanoparticles were mainly synthesized. In addition, these nanocrystalline structures were confirmed as the single phase AZO nanopowders with the hexagonal wurtzite ZnO structure by the XRD patterns and FE-TEM results with the SAED image. However, the composition changes of 0.3 and 1.0 at.% were checked for the as-synthesized AZO nanopowders at Al/Zn ratios of 3.3 and 6.7 at.%, respectively, by the XRF data, which can require the adjustment of Al/Zn in the mixture precursors for the applications of high Al doping concentrations
A case of anemia caused by combined vitamin B12 and iron deficiency manifesting as short stature and delayed puberty
Anemia caused by vitamin B12 deficiency resulting from inadequate dietary intake is rare in children in the modern era because of improvements in nutritional status. However, such anemia can be caused by decreased ingestion or impaired absorption and/or utilization of vitamin B12. We report the case of an 18-year-old man with short stature, prepubertal sexual maturation, exertional dyspnea, and severe anemia with a hemoglobin level of 3.3 g/dL. He had a history of small bowel resection from 50 cm below the Treitz ligament to 5 cm above the ileocecal valve necessitated by midgut volvulus in the neonatal period. Laboratory tests showed deficiencies of both vitamin B12 and iron. A bone marrow examination revealed dyserythropoiesis and low levels of hemosiderin particles, and a cytogenetic study disclosed a normal karyotype. After treatment with parenteral vitamin B12 and elemental iron, both anemia and growth showed gradual improvement. This is a rare case that presented with short stature and delayed puberty caused by nutritional deficiency anemia in Korea
- …