5,773 research outputs found

    Postnatal β-catenin deletion from Dmp1-expressing osteocytes/osteoblasts reduces structural adaptation to loading, but not periosteal load-induced bone formation

    Get PDF
    Mechanical signal transduction in bone tissue begins with load-induced activation of several cellular pathways in the osteocyte population. A key pathway that participates in mechanotransduction is Wnt/Lrp5 signaling. A putative downstream mediator of activated Lrp5 is the nucleocytoplasmic shuttling protein β-catenin (βcat), which migrates to the nucleus where it functions as a transcriptional co-activator. We investigated whether osteocytic βcat participates in Wnt/Lrp5-mediated mechanotransduction by conducting ulnar loading experiments in mice with or without chemically induced βcat deletion in osteocytes. Mice harboring βcat floxed loss-of-function alleles (βcat(f/f)) were bred to the inducible osteocyte Cre transgenic (10)(kb)Dmp1-CreERt2. Adult male mice were induced to recombine the βcat alleles using tamoxifen, and intermittent ulnar loading sessions were applied over the following week. Although adult-onset deletion of βcat from Dmp1-expressing cells reduced skeletal mass, the bone tissue was responsive to mechanical stimulation as indicated by increased relative periosteal bone formation rates in recombined mice. However, load-induced improvements in cross sectional geometric properties were compromised in recombined mice. The collective results indicate that the osteoanabolic response to loading can occur on the periosteal surface when β-cat levels are significantly reduced in Dmp1-expressing cells, suggesting that either (i) only low levels of β-cat are required for mechanically induced bone formation on the periosteal surface, or (ii) other additional downstream mediators of Lrp5 might participate in transducing load-induced Wnt signaling

    Attack Prevention for Collaborative Spectrum Sensing in Cognitive Radio Networks

    Full text link
    Collaborative spectrum sensing can significantly improve the detection performance of secondary unlicensed users (SUs). However, the performance of collaborative sensing is vulnerable to sensing data falsification attacks, where malicious SUs (attackers) submit manipulated sensing reports to mislead the fusion center's decision on spectrum occupancy. Moreover, attackers may not follow the fusion center's decision regarding their spectrum access. This paper considers a challenging attack scenario where multiple rational attackers overhear all honest SUs' sensing reports and cooperatively maximize attackers' aggregate spectrum utilization. We show that, without attack-prevention mechanisms, honest SUs are unable to transmit over the licensed spectrum, and they may further be penalized by the primary user for collisions due to attackers' aggressive transmissions. To prevent such attacks, we propose two novel attack-prevention mechanisms with direct and indirect punishments. The key idea is to identify collisions to the primary user that should not happen if all SUs follow the fusion center's decision. Unlike prior work, the proposed simple mechanisms do not require the fusion center to identify and exclude attackers. The direct punishment can effectively prevent all attackers from behaving maliciously. The indirect punishment is easier to implement and can prevent attacks when the attackers care enough about their long-term reward.Comment: 37 pages including 7 figures and 2 tables; IEEE Journal on Selected Areas in Communications with special issue in Cooperative Networking - Challenges and Applications (2012 expected

    Photoemission and x-ray absorption spectroscopy study of electron-doped colossal magnetoresistance manganite: La0.7Ce0.3MnO3 film

    Full text link
    The electronic structure of La0.7Ce0.3MnO3 (LCeMO) thin film has been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Ce 3d core-level PES and XAS spectra of LCeMO are very similar to those of CeO2, indicating that Ce ions are far from being trivalent. A very weak 4f resonance is observed around the Ce 4d \to 4f absorption edge, suggesting that the localized Ce 4f states are almost empty in the ground state. The Mn 2p XAS spectrum reveals the existence of the Mn(2+) multiplet feature, confirming the Mn(2+)-Mn(3+) mixed-valent states of Mn ions in LCeMO. The measured Mn 3d PES/XAS spectra for LCeMO agrees reasonably well with the calculated Mn 3d PDOS using the LSDA+U method. The LSDA+U calculation predicts a half-metallic ground state for LCeMO.Comment: 7 pages, 7 figure
    corecore