2,149 research outputs found
The path-integral analysis of an associative memory model storing an infinite number of finite limit cycles
It is shown that an exact solution of the transient dynamics of an
associative memory model storing an infinite number of limit cycles with l
finite steps by means of the path-integral analysis. Assuming the Maxwell
construction ansatz, we have succeeded in deriving the stationary state
equations of the order parameters from the macroscopic recursive equations with
respect to the finite-step sequence processing model which has retarded
self-interactions. We have also derived the stationary state equations by means
of the signal-to-noise analysis (SCSNA). The signal-to-noise analysis must
assume that crosstalk noise of an input to spins obeys a Gaussian distribution.
On the other hand, the path-integral method does not require such a Gaussian
approximation of crosstalk noise. We have found that both the signal-to-noise
analysis and the path-integral analysis give the completely same result with
respect to the stationary state in the case where the dynamics is
deterministic, when we assume the Maxwell construction ansatz.
We have shown the dependence of storage capacity (alpha_c) on the number of
patterns per one limit cycle (l). Storage capacity monotonously increases with
the number of steps, and converges to alpha_c=0.269 at l ~= 10. The original
properties of the finite-step sequence processing model appear as long as the
number of steps of the limit cycle has order l=O(1).Comment: 24 pages, 3 figure
Orbifold Unification for the Gauge and Higgs Fields and Their Couplings
We present an orbifold GUT model in which the NMSSM Higgs trilinear couplings
are unified with the three Standard Model gauge couplings. The model is
constructed as an N=2 supersymmetric SU(8) gauge theory in six dimensions,
which is reduced to the NMSSM with extra U(1) factors upon compactification.
Such an unification is in good agreement with experiments. The predicted upper
limit for the lightest CP-even neutral Higgs boson is somewhat larger than in
the MSSM, and can be tested in the upcoming Large Hadron Collider.Comment: RevTex4, 5 pages, 3 figures, version to appear in PL
Linear Complexity Lossy Compressor for Binary Redundant Memoryless Sources
A lossy compression algorithm for binary redundant memoryless sources is
presented. The proposed scheme is based on sparse graph codes. By introducing a
nonlinear function, redundant memoryless sequences can be compressed. We
propose a linear complexity compressor based on the extended belief
propagation, into which an inertia term is heuristically introduced, and show
that it has near-optimal performance for moderate block lengths.Comment: 4 pages, 1 figur
More anomaly-free models of six-dimensional gauged supergravity
We construct a huge number of anomaly-free models of six-dimensional N =
(1,0) gauged supergravity. The gauge groups are products of U(1) and SU(2), and
every hyperino is charged under some of the gauge groups. It is also found that
the potential may have flat directions when the R-symmetry is diagonally gauged
together with another gauge group. In an appendix, we determine the
contribution to the global SU(2) anomaly from symplectic Majorana Weyl fermions
in six dimensions.Comment: 20 pages, v3: published versio
Generating functional analysis of complex formation and dissociation in large protein interaction networks
We analyze large systems of interacting proteins, using techniques from the
non-equilibrium statistical mechanics of disordered many-particle systems.
Apart from protein production and removal, the most relevant microscopic
processes in the proteome are complex formation and dissociation, and the
microscopic degrees of freedom are the evolving concentrations of unbound
proteins (in multiple post-translational states) and of protein complexes. Here
we only include dimer-complexes, for mathematical simplicity, and we draw the
network that describes which proteins are reaction partners from an ensemble of
random graphs with an arbitrary degree distribution. We show how generating
functional analysis methods can be used successfully to derive closed equations
for dynamical order parameters, representing an exact macroscopic description
of the complex formation and dissociation dynamics in the infinite system
limit. We end this paper with a discussion of the possible routes towards
solving the nontrivial order parameter equations, either exactly (in specific
limits) or approximately.Comment: 14 pages, to be published in Proc of IW-SMI-2009 in Kyoto (Journal of
Phys Conference Series
Coupling Unifications in Gauge-Higgs Unified Orbifold Models
Supersymmetric gauge theories, in higher dimensions compactified in an
orbifold, give a natural framework to unify the gauge bosons, Higgs fields and
even the matter fields in a single multiplet of the unifying gauge symmetry.
The extra dimensions and the supersymmetry are the two key ingredients for such
an unification. In this work, we investigate various scenarios for the
unification of the three gauge couplings, and the Yukawa couplings in the
Minimal Supersymmetric Standard Model (MSSM), as well as the trilinear Higgs
couplings \lambda and \kappa of the Non-Minimal Supersymmetric Standard Model
(NMSSM). We present an SU(8) model in six dimensions with N=2 supersymmetry,
compactified in a T^2/Z_6 orbifold which unifies the three gauge couplings with
\lambda and \kappa of NMSSM. Then, we present an SU(9) model in 6D, which, in
addition, includes partial unification of Yukawa couplings, either for the
up-type (top quark and Dirac tau-neutrino) or down-type (bottom quark and tau
lepton). We also study the phenomenological implications of these various
unification scenarios using the appropriate renormalization group equations,
and show that such unification works very well with the measured low energy
values of the couplings. The predicted upper bounds for the lightest neutral
Higgs boson mass in our model is higher than those in MSSM, but lower that
those in the general NMSSM (where the couplings \lambda and \kappa are
arbitrary). Some of the predictions of our models can be tested in the upcoming
Large Hadron Collider.Comment: 29 pages, 4 figure
Neutrino Mixing Predictions of a Minimal SO(10) Model with Suppressed Proton Decay
During the past year, a minimal renormalizable supersymmetric SO(10) model
has been proposed with the following properties: it predicts a naturally stable
dark matter and neutrino mixing angles theta_atm and theta_13 while at the same
time accommodating CKM CP violation among quarks with no SUSY CP problem.
Suppression of proton decay for all allowed values of tan beta strongly
restricts the flavor structure of the model making it predictive for other
processes as well. We discuss the following predictions of the model in this
paper, e.g. down-type quark masses, and neutrino oscillation parameters, U_e3,
delta_MNSP, which will be tested by long baseline experiments such as T2K and
subsequent experiments using the neutrino beam from JPARC. We also calculate
lepton flavor violation and the lepton asymmetry of the Universe in this model.Comment: 22 pages, 11 figure
- …