
b

l gauge
to
in
at larger
Physics Letters B 622 (2005) 320–326

www.elsevier.com/locate/physlet

Orbifold unification for the gauge and Higgs fields
and their couplings

Ilia Gogoladzea, Tianjun Lib, Yukihiro Mimurac, S. Nandid

a Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA
b School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

c Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
d Department of Physics, Oklahoma State University, Stillwater, OK 74078-3072, USA

Received 6 April 2005; received in revised form 19 May 2005; accepted 29 June 2005

Available online 18 July 2005

Editor: M. Cvetǐc

Abstract

We present an orbifold GUT model in which the Higgs trilinear couplings are unified with the three Standard Mode
couplings. The model is constructed as anN = 2 supersymmetricSU(8) gauge theory in six dimensions, which is reduced
a supersymmetric Standard Model with three singlets and extraU(1) factors upon compactification. Such an unification is
good agreement with experiments. The predicted upper limit for the lightest CP-even neutral Higgs boson is somewh
than in the MSSM, and can be tested in the upcoming large hadron collider.
 2005 Elsevier B.V.
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1. Introduction

The minimal supersymmetric Standard Mod
(MSSM) is the most natural extension of the Stand
Model (SM). It elegantly solves the gauge hierarc
problem, contains neutralino as the cold dark m
ter candidate, and naturally accommodates the ga
coupling unification[1,2]. Depending on the supe
symmetry breaking mechanism, it also has disti
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predictions for the sparticles’ (supersymmetric pa
ners of the SM particles) spectra which can be tes
at the upcoming colliders such as the large had
collider (LHC) and the future international linear co
lider (ILC). Despite all these successes, there are
eral unanswered questions within the MSSM. W
the bilinear supersymmetric Higgs massµ (in the su-
perpotential) involving the up and down Higgs sup
fields,µHuHd , is at the TeV scale but not at the Plan
scale? This is known as theµ problem. Also the pre
dicted upper bound for the mass of the lightest C
even neutral Higgs bosonh0 is around 130 GeV[3],
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which is not much higher than the current experim
tal lower limit, 114 GeV. Moreover, the prediction fo
the proton decay rate through dimension-5 opera
is uncomfortably close to the current experimen
bounds.

These problems in the MSSM have prompted m
to consider the possible extensions to the next to
minimal supersymmetric Standard Model (NMSS
[4] by the addition of one or more Higgs singlets
the usual two doublets present in the MSSM. Su
extensions can be used to solve theµ problem, and
extend the upper mass limit for the Higgs mass. A
ditionally, in an orbifold GUT model (such as th
one being proposed here), the doublet–triplet splitt
problem is naturally solved, thus avoiding the po
sible problem with the proton decay rate[5]. With
the addition of one singlet Higgs field, we can ha
the additional trilinear interaction termsλSHuHd and
κS3/3 in the superpotential. After minimization of th
scalar Higgs potential,S can obtain a vacuum expect
tion value (VEV) around the supersymmetry-break
scale (MSUSY), and generate an effectiveµ term with
µ = λ〈S〉. Thus, theµ problem is solved. Howeve
such NMSSM lacks definite predictions because
Higgs couplingsλ andκ are completely arbitrary. I
there a theoretical framework in which the values oλ

andκ get determined?
In this work, we present a supersymmetric Stand

Model with three SM singlets and following superp
tential

(1)W = λHuHdS − κSS1S2,

where the Yukawa couplingsλ andκ get determined
in terms of the gauge couplings, and thus making
model predictive and testable by experiment. The i
is simple, and very attractive, and has lead to the u
cation of gauge and Yukawa couplings[6]. We use the
framework of extra dimensions with supersymme
The two Higgs doublets, as well as the singlets are
part of the gauge multiplet in higher dimensions, a
the non-minimal interactions involving theλ andκ are
just part of the gauge interactions in higher dime
sions. We present the realization of this idea below

2. Formalism and the model

We consider a theory with a gauge symmetryG

in six dimensions (6D) withN = 2 supersymmetry
(The two extra dimensions will be compactified on
suitable orbifold such that the gauge symmetry is b
ken down to the SM with possibly some extraU(1)

factors, and the supersymmetry is broken down
N = 1.) TheN = 2 supersymmetry in 6D correspon
to N = 4 supersymmetry in 4D, and thus only t
gauge multiplet can be introduced in the bulk. In ter
of 4D N = 1 language, the six-dimensional gau
multiplet contains a vector multiplet,V , and three chi-
ral multipletsΣ1, Σ2, andΣ3 in the adjoint represen
tation of the gauge groupG. The bulk action[7], writ-
ten in 4DN = 1 language and in the Wess–Zumi
gauge, contains the following trilinear term of the c
ral multiplets

S =
∫

d6x

∫
d2θ

1

kg2
Tr

(−√
2Σ1[Σ2,Σ3]

)

(2)+ H.C.,

wherek is the normalization factor for the group ge
erators. If the SM singlet Higgs field, and the up- a
down-type Higgs doublets are contained in the z
modes of the chiral multipletsΣ1, Σ2, andΣ3, the
gauge interaction term, Eq.(2), includes the trilinear
Higgs interaction termλSHuHd with the couplingλ

determined in terms of the gauge couplingg. In this
construction, the singlet Higgs field, the two Hig
doublets, and the gauge fields are all unified in a sin
multiplet of the gauge symmetry groupG in higher di-
mensions. In the NMSSM, we also need a cubic te
κS3/3 for the singlet fieldS to develop a VEV. We can
see from Eq.(1) that we need three SM singlet Higg
fields to be present in the zero modes ofΣ1, Σ2, and
Σ3 leading to a trilinear termκSS1S2.

We now address what bulk gauge symmetry
need to unify bothλ andκ with the gauge couplings
To obtain both the Higgs doublets and the singlets
zero modes in 4D from the extra-dimensional co
ponents of the higher-dimensional gauge multip
and also to break the supersymmetry toN = 1, the
minimal bulk gauge symmetry needed isSU(4)W .
In this case,SU(4)W is broken down toSU(2)L ×
U(1)Y × U(1)′ upon compactification, and the a
joint 15-dimensional representation will have tw
doublets,Hu and Hd , and a singletS as the zero
modes. In this case, we can obtain only the trilin
interactionλSHuHd from the bulk gauge interactio
with λ = g , whereg is the weak gauge coupling
2 2
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Table 1
The zero modes of the chiral multipletsΣ1, Σ2 and Σ3,
and their quantum numbers under theSU(3)C × SU(2)L ×
U(1)Y × U(1)α × U(1)β × U(1)γ gauge symmetry. The
anti-symmetric subscriptsQij (Qij = −Qji) are the charges
under the U(1)Y × U(1)α × U(1)β × U(1)γ gauge symme-
try: Q12 = (−5/6,0,0,0), Q13 = (−1/3,8/15,−1/2,−1/2),
Q14 = (−1/3,8/15,1/2,−1/2), Q15 = (−1/3,8/15,0,1),
Q23 = (1/2,8/15,−1/2,−1/2), Q24 = (1/2,8/15,1/2,−1/2),
Q25 = (1/2,8/15,0,1), Q34 = (0,0,1,0), Q35 =
(0,0,1/2,3/2), Q45= (0,0,−1/2,3/2)

Zero modes forΣi (in theith row)

QX : (3, 2̄)Q12; H ′
u: (1,2)Q23; S: (1,1)Q45 D̄δ : (3̄,1)Q51

Dδ : (3,1)Q13; S2: (1,1)Q34; D̄X : (3̄,1)Q41; Hd : (1, 2̄)Q52
Hu: (1,2)Q24; S1: (1,1)Q53; S′

1: (1,1)Q35; H ′
d
: (1, 2̄)Q42

The minimal gauge symmetry in the bulk to inclu
both the λ and κ terms from the zero mode bu
interaction isSU(5)W . The SU(5)W gauge symme
try in the bulk, upon compactification to 4D, is br
ken down toSU(2)L × U(1)Y × U(1)′ × U(1)′′. The
SU(5)W adjoint representation,24, decomposed unde
theSU(2)L ×U(1)Y ×U(1)′ ×U(1)′′ contains the two
Higgs doublets,Hu andHd , as well as three singlet
S, S1 andS2 as zero modes. The bulk gauge inter
tion contains theλSHuHd , as well asκSS1S2 terms,
giving rise toλ = κ = g2 at the compactification scale
With SU(3)C ×SU(5)W as the gauge symmetry in th
bulk, we can include color interaction, but this do
not unify the three SM gauge couplings. Thus we
naturally lead to anSU(8) gauge symmetry in the bul
to unify all three SM gauge couplings withλ andκ .

The model we propose for the gauge and Higgs
linear coupling unification is in six dimensions wi
N = 2 supersymmetry, andSU(8) gauge symmetry
The two extra dimensionsx5 andx6 are compactified
on aT 2/Z6 orbifold, which is obtained from torusT 2

by moduloing theZ6 equivalent class:z ∼ ωz, wherez
is the complex coordinate of the extra dimensions
ω = eiπ/3. The transformation property for the vect
multiplet,V is

(3)V
(
xµ,ωz,ω−1z̄

) = RV
(
xµ, z, z̄

)
R−1,

whereR is an 8× 8 matrix andR6 = I . The transfor-
mation rules for the three chiral multipletsΣ1, Σ2, and
Σ3 are obtained by multiplying the right-hand side
the Eq.(3) by the additional factorsω−1, ω−1−m, and
ω2+m, respectively, wherem is an integer. These tran
formations keep the bulk action invariant and no
trivial R breaks the bulk gauge symmetryG at the 4D
fixed point[8]. We choose the matrixR to be

(4)R = diag
(+1,+1,+1,ωn1,ωn1,ωn2,ωn3,ωn4

)
.

Then, for unequal values of the integersn1, n2, n3
andn4, upon compactification to 4D, theSU(8) gauge
symmetry breaks toSU(3)C × SU(2)L × U(1)Y ×
U(1)α × U(1)β × U(1)γ , and theN = 4 supersym-
metry in 4D is broken down toN = 1 by an ap-
propriate choice ofm. For the choice ofm = 1, and
n1 = 5, n2 = 4, n3 = 2 andn4 = 1, the zero mode
of the 63-dimensional vector multiplet are the gau
bosons (and gauginos) corresponding to the unbro
gauge symmetry, while the zero modes of the th
63-dimensional chiral multipletsΣ1, Σ2 andΣ3, and
their quantum numbers are given inTable 1. These
zero modes include the Higgs bosons of above mo
in the compactified 4D theory. From the bulk acti
in Eq. (2), we obtain the non-minimal Higgs inte
actions for the zero modes of the kinetic-normaliz
chiral multiplets

S =
∫

d6x

[∫
d2θ g6(SHuHd − SS1S2

− QXD̄XHu + S2H
′
uH

′
d − S′

1H
′
uHd

(5)+ S′
1DδD̄δ) + H.C.

]
,

whereg6 is the 6D gauge coupling whose mass dim
sion is−1.

The extra U(1) gauge symmetries,U(1)α ×
U(1)β × U(1)γ can be broken at the compactificati
scale via Higgs mechanism, and thus the exotic qu
QX, D̄X, Dδ , D̄δ , and the exotic doubletsH ′

u andH ′
d

can acquire superheavy masses at this scale after
extraU(1) gauge symmetries are broken. This can
achieved on the 3-brane at theZ6 fixed point, for ex-
ample,z = 0, by introducing two exotic quarks̄Q′

X

and D′
δ with quantum numbers(3̄,2)(5/6,0,−1,0) and

(3,1)(−1/3,8/15,−1,1) respectively under theSU(3)C ×
SU(2)L × U(1)Y × U(1)α × U(1)β × U(1)γ gauge
symmetry. We also introduce a SM singlet Higgs fie
S̃2 which has the same quantum number as that oS2
and is localized on the 3-brane atz = 0. After S̃2 gets a
VEV, the exotic quarks and Higgs doublets can obt
the vector-like masses through the following bra
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localized superpotential,

(6)
W = S̃2H

′
uH

′
d + S̃2DδD̄X + S̃2QXQ̄′

X + S̃2D
′
δD̄δ.

Similarly, S′
1 can be made superheavy. Furthermo

the extraU(1) symmetries can have gauge anoma
in 4D since some of vector-like pairs of the zero mod
are projected out by orbifolding. Thus, we need to a
brane-localized fields which has extraU(1) charges to
cancel the gauge anomalies, and this can be an o
of the extra fields such as̃S2 and breaking of extra
U(1) symmetries.

After theU(1)α ×U(1)β ×U(1)γ gauge symmetry
is broken, we have the relevant superpotential

(7)

S =
∫

d6x

[∫
d2θ g6(SHuHd − SS1S2) + H.C.

]
.

Integrating out the two extra dimensions, we obtain
the GUT scale,

(8)g3 = g2 = g1 = λ = κ = g6/
√

V ,

whereV is the volume of extra dimensions, andg3, g2
andg1 ≡ √

5/3gY are the 4D gauge couplings for th
SM gauge symmetrySU(3)C , SU(2)L andU(1)Y , re-
spectively. The true unification scale of the couplin
is the cutoff scale (M∗) in the orbifold models, but fo
simplicity, we here assume that the compactificat
scale is the GUT scale (∼ 2 × 1016 GeV) so that the
Higgs trilinear couplingsλ andκ can be predicted. W
also neglect the brane-localized gauge kinetic te
which are assumed to be suppressed by

√
V M∗ com-

pared to the bulk kinetic term.
In our model, we introduce three families of the S

fermions on the 3-brane at theZ6 fixed pointz = 0.
Moreover, we emphasize that the hypercharge inte
tion in the SM can be one linear combination of t
U(1)α andU(1)Y in aboveSU(8) model, and then the
hypercharge normalization may not be determined
this model as in the usual orbifold GUT models wh
all the SM fermions are brane-localized fields. Ho
ever, if we identifyD̄δ as a right-handed down-typ
quark field in the presented choice ofZ6 charge as-
signment, the hypercharge normalization in the S
can be the same as usualSU(5) normalization.

These additional zero modes such as exotic qua
extra doublets and singlets can also be elimina
from the zero modes of the compactified 4D sp
trum by considering a 7-dimensional theory withN =
1 supersymmetry andSU(8) bulk gauge symmetry
and compactifying the three extra dimensions o
T 2/Z6 × S1/Z2 orbifold. Due to the orbifold projec
tions, the bulkSU(8) gauge symmetry is broken d
rectly down to the SM-like gauge symmetry, and th
are only one pair of Higgs doublets and three SM s
glets in the Higgs sector arising from the zero mo
of bulk vector multiplet. In this case, however, the h
percharge normalization is not determined complet
When we consider larger gauge group, the quark
lepton fields can also be unified with the bulk gau
multiplet and then the hypercharge normalization w
be fixed naturally[9].

The superpotential in Eq.(7) contains five SM neu
tral complex scalar fields and (in the general ca
three phase symmetries in the scalar potential. On
these is theU(1) gauge symmetry related to theZ bo-
son, implying two unwanted global symmetries. The
will generally be spontaneously broken, implying tw
massless Goldstone bosons. One of these has largH 0

d

and H 0
u components and is clearly excluded by t

known experiment. The second consists mainly of
S, S1 andS2 fields, and is most likely also exclude
although a detailed investigation is beyond the sc
of this Letter. Let us give one possible solution to t
problem. To break theU(1)β × U(1)γ gauge symme
try at GUT scale by Higgs mechanism, we introdu
the SM singlet vector-like fields(N1, N̄1), (N2, N̄2)

and(N3, N̄3). And the quantum numbers forN1, N2
andN3 under theU(1)Y × U(1)α × U(1)β × U(1)γ
gauge symmetry are(0,0,7/2,−21/2), (0,0,−9,0)

and(0,0,4,12), respectively. So, we can have the fo
lowing non-renormalizable terms in the superpoten

(9)W ′ = h1
S7N1

M5∗
+ h2

S9
2N2

M7∗
+ h3

S8
1N3

M6∗
,

whereh1, h2, h3 are Yukawa coupling constants. A
ter N1, N2 andN3 get VEVs, we obtain the effectiv
superpotential at low scale

(10)W ′ = h′
1

S7

M4∗
+ h′

2
S9

1

M6∗
+ h′

3
S8

2

M5∗
,

whereh′
i = hi〈Ni〉/M∗. As shown in Ref.[10], these

non-renormalizable terms in the above superpoten
do not generate the dangerous quadratically diver
tadpoles for the SM singlet fieldsS andSi [11]. Also,
we do not have global symmetries in our model,
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there are no massless Goldstone bosons and the
no domain wall problem after the Higgs doublets a
SM singlets obtain VEVs.

3. Phenomenology

We now briefly discuss the phenomenological i
plication of our model, in particular, the implication
the effective superpotential given by Eq.(7), and the
unification of Higgs trilinear couplings with the SM
gauge couplings, Eq.(8). The unification prediction
can be tested by using the appropriate renorma
tion group equations (RGEs) for these couplings.
numerical calculations, we consider two-loop RG
runnings for the SM gauge couplings and top qu
Yukawa couplingyt , and one-loop RGE runnings fo
the Higgs trilinear couplings (λ andκ) [12], with con-
version from MS scheme to dimensional reductio
(DR) scheme. We also include the standard supers
metric threshold corrections at low energy by choos
a single scaleMSUSY= MZ whereMZ is theZ-boson
mass[13]. The relevant RGEs are

(11)
dαλ

dt
= αλ

2π

(
ακ + 4αλ + 3αt − 3

5
α1 − 3α2

)
,

(12)
dακ

dt
= ακ

2π
(3ακ + 2αλ),

dαt

dt
=

[
dαt

dt

]
MSSM

(13)+ αt

2π

(
αλ − 1

4π
αλ(3αt + 3αλ + ακ)

)
,

(14)
dα2

dt
=

[
dα2

dt

]
MSSM

+ α2
2

8π2
(−2αλ),

(15)
dα1

dt
=

[
dα1

dt

]
MSSM

+ α2
1

8π2

(
−6

5
αλ

)
,

where t is the log of renormalization scale,αi =
g2

i /(4π), αλ = λ2/(4π), ακ = κ2/(4π), αt = y2
t /(4π)

and the bracket[ ] denotes the corresponding two-lo
RGEs in the MSSM. We use the values of SM gau
couplings atMZ in Ref. [14] and the top quark mas
to be 178 GeV.

Our results for the unification of the gauge a
Higgs trilinear couplings using the RGEs, Eqs.(11)–
(15), are shown inFig. 1 for tanβ = 5 where tanβ ≡
〈H 0〉/〈H 0〉. Also the predictions for the couplingsλ
u d
sand κ at the weak scale,MZ , for various values o
tanβ are shown inFig. 2.

Since the values ofλ and κ are predicted in ou
model, we can calculate the upper bound on the m
of the lightest CP-even neutral Higgs bosonh0 by
using the full one-loop and the leading logarithm
two-loop corrections[3]. In Fig. 3, we plot the upper
bounds for theh0 mass in the MSSM, the NMSSM
and our model versus tanβ. Note that for a large rang
of tanβ, the mass bound in our model is larger than
the MSSM, but less than in the NMSSM in which t
values ofλ andκ are arbitrary. For this calculation w
use the approximation that the mass of CP-odd Hi
(MA) is order of the square root of the arithmetic a
erage of the stop squared-mass eigenvalues (M). The

Fig. 1. For tanβ = 5, the unification of the SM gauge coupling
(α1, α2, α3) and Higgs trilinear couplings (αλ andακ ).

Fig. 2. The Higgs trilinear couplingsλ andκ at the weak scale ver
sus tanβ .
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Fig. 3. The upper bounds on the lightest CP-even neutral Higgh0

mass in the MSSM, the NMSSM and our model versus tanβ : the
blue dash-dot line, green dash line, and red solid line correspo
the MSSM, the NMSSM, and our model, respectively. (For interp
tation of the references to colour in this figure legend, the read
referred to the web version of this Letter.)

validity of our prediction can be tested in the upco
ing LHC.

4. Conclusions

We have presented a supersymmetric Stand
Model in which the Higgs trilinear couplingsλ and
κ are unified with the three SM gauge couplings
the unification scale. This is an orbifold GUT mod
in 6D with N = 2 supersymmetry. The symmet
is broken down to the SM gauge symmetry in fo
dimensions via orbifold compactification as well
via Higgs mechanism. The unification prediction
in good agreement with experiments. The predic
upper bound for the lightest CP-even Higgs mas
somewhat larger than in the MSSM, and can be te
at the LHC. The detail model buildings which al
include the possible unification of the third-fami
Yukawa couplings, and their phenomenological c
sequences will be presented elsewhere.
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