378 research outputs found

    Marked improvement of cytotoxic effects induced by docetaxel on highly metastatic and androgen-independent prostate cancer cells by downregulating macrophage inhibitory cytokine-1.

    Get PDF
    BACKGROUND: Overexpression of macrophage inhibitory cytokine-1 (MIC-1) frequently occurs during the progression of prostate cancer (PC) to androgen-independent (AI) and metastatic disease states and is associated with a poor outcome of patients. METHODS: The gain- and loss-of-function analyses of MIC-1 were performed to establish its implications for aggressive and chemoresistant phenotypes of metastatic and AI PC cells and the benefit of its downregulation for reversing docetaxel resistance. RESULTS: The results have indicated that an enhanced level of secreted MIC-1 protein in PC3 cells is associated with their acquisition of epithelial-mesenchymal transition features and higher invasive capacity and docetaxel resistance. Importantly, the downregulation of MIC-1 in LNCaP-LN3 and PC3M-LN4 cells significantly decreased their invasive capacity and promoted the antiproliferative, anti-invasive and mitochrondrial- and caspase-dependent apoptotic effects induced by docetaxel. The downregulation of MIC-1 in PC3M-LN4 cells was also effective in promoting the cytotoxic effects induced by docetaxel on the side population (SP) endowed with stem cell-like properties and the non-SP cell fraction from PC3M-LN4 cells. CONCLUSION: These data suggest that the downregulation of MIC-1 may constitute a potential therapeutic strategy for improving the efficacy of current docetaxel-based chemotherapies, eradicating the total mass of PC cells and thereby preventing disease relapse and the death of PC patients

    Pathobiological Implications of the Expression of EGFR, pAkt, NF-κB and MIC-1 in Prostate Cancer Stem Cells and Their Progenies

    Get PDF
    The progression of prostate cancers (PCs) to locally invasive, androgen-independent and metastatic disease states is generally associated with treatment resistance and disease relapse. The present study was undertaken to establish the possibility of using a combination of specific oncogenic products, including epidermal growth factor receptor (EGFR), pAkt, nuclear factor-kappaB (NF-κB) and macrophage inhibitory cytokine-1 (MIC-1) as biomarkers and therapeutic targets for optimizing the management of patients with localized PC at earlier disease stages. The immunohistochemical and immunofluorescence data have revealed that the expression levels of EGFR, Ser473-pAkt, NF-κB p65 and MIC-1 proteins were significantly enhanced in the same subset of 76 cases of prostatic adenocarcinoma specimens during the disease progression and these biomarkers were expressed in a small subpopulation of CD133+ PC cells and the bulk tumor mass of CD133− PC cells. Importantly, all of these biomarkers were also overexpressed in 80–100% of 30 PC metastasis bone tissue specimens. Moreover, the results have indicated that the EGF-EGFR signaling pathway can provide critical functions for the self-renewal of side population (SP) cells endowed with stem cell-like features from highly invasive WPE1-NB26 cells. Of therapeutic interest, the targeting of EGFR, pAkt, NF-κB or MIC-1 was also effective at suppressing the basal and EGF-promoted prostasphere formation by SP WPE1-NB26 cells, inducing disintegration of SP cell-derived prostaspheres and decreasing the viability of SP and non-SP WPE1-NB26 cell fractions. Also, the targeting of these oncogenic products induced the caspase-dependent apoptosis in chemoresistant SP WPE1-NB26 cells and enhanced their sensibility to the cytotoxic effects induced by docetaxel. These findings suggest that the combined use of EGFR, pAkt, NF-κB and/or MIC-1 may represent promising strategies for improving the accuracy of current diagnostic and prognostic methods and efficacy of treatments of PC patients in considering the disease heterogeneity, thereby preventing PC progression to metastatic and lethal disease states

    Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers.

    Get PDF
    Overcoming intrinsic and acquired resistance of cancer stem/progenitor cells to current clinical treatments represents a major challenge in treating and curing the most aggressive and metastatic cancers. This review summarizes recent advances in our understanding of the cellular origin and molecular mechanisms at the basis of cancer initiation and progression as well as the heterogeneity of cancers arising from the malignant transformation of adult stem/progenitor cells. We describe the critical functions provided by several growth factor cascades, including epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor (SCF) receptor (KIT), hedgehog and Wnt/beta-catenin signalling pathways that are frequently activated in cancer progenitor cells and are involved in their sustained growth, survival, invasion and drug resistance. Of therapeutic interest, we also discuss recent progress in the development of new drug combinations to treat the highly aggressive and metastatic cancers including refractory/relapsed leukaemias, melanoma and head and neck, brain, lung, breast, ovary, prostate, pancreas and gastrointestinal cancers which remain incurable in the clinics. The emphasis is on new therapeutic strategies consisting of molecular targeting of distinct oncogenic signalling elements activated in the cancer progenitor cells and their local microenvironment during cancer progression. These new targeted therapies should improve the efficacy of current therapeutic treatments against aggressive cancers, and thereby preventing disease relapse and enhancing patient survival

    The management of hepatobiliary cystadenomas: lessons learned

    Get PDF
    AbstractBackgroundMucinous cystic neoplasms of the liver (hepatobiliary cystadenomas) are rare neoplastic lesions. Such cysts are often incorrectly diagnosed and managed, and carry a risk of malignancy. The objective of this study was to review the surgical experience with these lesions over 15 years.MethodsA retrospective chart review identified consecutive patients undergoing surgery for liver cystadenomas from 1997–2011. Clinical data were collected and summarized.ResultsThirteen patients (mean age 51 years, 12/13 females) with cysts 4.6–18.1cm were identified. Most cysts were located in the left lobe/centrally (11/12) and had septations (8/13). Mural nodularity was infrequent (3/13). Nine patients had liver resection/enucleation, whereas four had unroofing. Frozen section analysis had a high false‐negative rate (4/6). All patients had cystadenomas, of which two had foci of invasive carcinoma (cystadenocarcinoma) within mural nodules. There was no 90‐day mortality. All but one patient (myocardial infarction) were alive at a median follow‐up of 23.1 months. No patient with unroofing has developed malignancy to date.ConclusionsNon‐invasive hepatobiliary cystadenomas present as large central/left‐sided cysts in young or middle‐aged women. Associated malignancy was relatively uncommon and found within mural nodules. Intra‐operative frozen section analysis was ineffective at ruling out cystadenomas. Complete excision is recommended, but close follow‐up might be considered in patients with a prohibitive technical or medical risk, in the absence of nodularity on high‐quality imaging

    Accumulation of driver and passenger mutations during tumor progression

    Get PDF
    Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a novel mathematical model that begins to address this challenge. We model tumors as a discrete time branching process that starts with a single driver mutation and proceeds as each new driver mutation leads to a slightly increased rate of clonal expansion. Using the model, we observe tremendous variation in the rate of tumor development - providing an understanding of the heterogeneity in tumor sizes and development times that have been observed by epidemiologists and clinicians. Furthermore, the model provides a simple formula for the number of driver mutations as a function of the total number of mutations in the tumor. Finally, when applied to recent experimental data, the model allows us to calculate, for the first time, the actual selective advantage provided by typical somatic mutations in human tumors in situ. This selective advantage is surprisingly small, 0.005 +- 0.0005, and has major implications for experimental cancer research

    Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts

    Get PDF
    Osteoblast and adipocyte are derived from common mesenchymal progenitor cells. The bone loss of osteoporosis is associated with altered progenitor differentiation from an osteoblastic to an adipocytic lineage. In this study, a comparative analysis of gene expression profiling using cDNA microarray and realtime-PCR indicated that Zinc finger protein 467 (Zfp467) involved in adipocyte and osteoblast differentiation of cultured adipose derived stem cells (ADSCs). Our results showed that RNA interference for Zfp467 in ADSCs inhibited adipocyte formation and stimulated osteoblast commitment. The mRNA levels of osteogenic and adipogenic markers in ADSCs were regulated by si-Zfp467. Zfp467 RNAi in ADSCs could restore bone function and structure in an ovariectomized (OVX)-induced osteoporotic mouse model. Thus Zfp467 play an important role in ADSCs differentiation to adipocyte and osteoblast. This has relevance to therapeutic interventions in osteoporosis, including si-Zfp467-based therapies currently available, and may be of relevance for the use of adipose-derived stem cells for tissue engineering

    Tumour Cannabinoid CB1 Receptor and Phosphorylated Epidermal Growth Factor Receptor Expression Are Additive Prognostic Markers for Prostate Cancer

    Get PDF
    BACKGROUND: In cultured prostate cancer cells, down-regulation of epidermal growth factor receptor (EGFR) has been implicated in mediating the antiproliferative effect of the endogenous cannabinoid (CB) ligand anandamide. Using a well-characterised cohort of prostate cancer patients, we have previously reported that expression levels of phosphorylated EGFR (pEGFR-IR) and CB(1) receptor (CB(1)IR) in tumour tissue at diagnosis are markers of disease-specific survival, but it is not known whether the two markers interact in terms of their influence on disease severity at diagnosis and disease outcome. METHODOLOGY/PRINCIPAL FINDINGS: Data from a cohort of 419 patients who were diagnosed with prostate cancer at transurethral resection for voiding difficulties was used. Scores for both tumour CB(1)IR and pEGFR-IR were available in the database. Of these, 235 had been followed by expectancy until the appearance of metastases. For patients scored for both parameters, Cox proportional-hazards regression analyses using optimal cut-off scores indicated that the two measures provided additional diagnostic information not only to each other, but to that provided by the tumour stage and the Gleason score. When the cases were divided into subgroups on the basis of these cut-off scores, the patients with both CB(1)IR and pEGFR-IR scores above their cut-off had a poorer disease-specific survival and showed a more severe pathology at diagnosis than patients with high pEGFR-IR scores but with CB(1)IR scores below the cut-off. CONCLUSIONS/SIGNIFICANCE: These data indicate that a high tumour CB(1) receptor expression at diagnosis augments the deleterious effects of a high pEGFR expression upon disease-specific survival

    Clinical Implication of Targeting of Cancer Stem Cells

    Get PDF
    The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base
    corecore